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Abstract—Informed and robust decision making in the face
of uncertainty is critical for robots that perform physical tasks
alongside people. We formulate this as Bayesian Reinforcement
Learning over latent Markov Decision Processes (MDPs). While
Bayes-optimality is theoretically the gold standard, existing
algorithms do not scale well to continuous state and action
spaces. Our proposal builds on the following insight: in the
absence of uncertainty, each latent MDP is easier to solve. We
first obtain an ensemble of experts, one for each latent MDP,
and fuse their advice to compute a baseline policy. Next, we
train a Bayesian residual policy to improve upon the ensemble’s
recommendation and learn to reduce uncertainty. Our algorithm,
Bayesian Residual Policy Optimization (BRPO), imports the
scalability of policy gradient methods and task-specific expert
skills. BRPO significantly improves the ensemble of experts and
drastically outperforms existing adaptive RL methods.

I. INTRODUCTION

Robots that are deployed in the real world must continue
to operate in the face of model uncertainty. For example, an
autonomous vehicle must safely navigate around pedestrians
navigating to latent goals (Figure 1). A robot arm must reason
about occluded objects when reaching into a cluttered shelf.
This class of problems can be framed as Bayesian reinforcement
learning (BRL) where the agent maintains a belief over latent
Markov Decision Processes (MDPs). Under model uncertainty,
agents do not know which latent MDP they are interacting
with, preventing them from acting optimally with respect to
that MDP. At best, they can be Bayes optimal, or optimal with
respect to their current uncertainty over latent MDPs.

In this work, we focus on continuous control tasks with
model uncertainty. Specifically, we aim to solve problems
in which the latent model is independently resampled at the
beginning of each episode. In the autonomous vehicle example,
the pedestrians’ goals are unknown and must be rediscovered
whenever the agent sees a new set of pedestrians. In these
settings, the agent must actively reduce uncertainty or select
actions that are robust to it.

A Bayesian RL problem can be viewed as solving a large
continuous belief MDP, which is computationally infeasible
to solve directly [13]. These tasks, especially with continuous
action spaces, are challenging even for state-of-the-art belief-
space planning and robust RL algorithms. Continuous action
spaces are challenging for existing POMDP algorithms, which
are either limited to discrete action spaces [24] or rely on online
planning and samples from the continuous action space [16].
Latent MDPs can be complex and may require vastly different

Fig. 1: An autonomous vehicle approaches an area with
unpredictable pedestrians, each noisily moving toward their
own latent goal. Given uncertainty on their goals, the agent
must take the Bayes-optimal action to quickly drive past them
without collisions.

policies to achieve high reward; robust RL methods [37, 46]
are often unable to produce that multi-modality.

We build upon a simple yet recurring observation [8, 22, 29]:
while solving the belief MDP is hard, solving individual latent
MDPs, in the absence of uncertainty, is much more tractable. If
the path for each pedestrian is known, the autonomous vehicle
can invoke a motion planner that avoids collision. We can
think of these solutions as clairvoyant experts, i.e., experts that
think they know the latent MDP and offer advice accordingly.
Combining advice from the clairvoyant experts can be effective,
but such an ensemble policy can be suboptimal in the original
belief MDP. Since experts are individually confident about
which MDP the agent faces, the ensemble never prioritizes
uncertainty reduction or robust actions, which can be critical in
solving the original problem with inherent model uncertainty.

Our algorithm, Bayesian Residual Policy Optimization
(BRPO), computes a residual policy to augment a given
ensemble of clairvoyant experts (Figure 2). This is computed
via policy optimization in a residual belief MDP, induced by the
ensemble policy’s actions on the original belief MDP. Because
the ensemble is near-optimal when the entropy is low, BRPO
can focus on learning how to safely collapse uncertainty in
regions of higher entropy. It can also start with much higher



Belief over pedestrian goals

Ensemble of  
Clairvoyant Experts

Expert 1

Expert k

Recommendation

BRPO 
Network

M

Correction

Bayes-optimal Policy 

Fig. 2: An overview of Bayesian Residual Policy Optimization. (a) Pedestrian goals are latent and tracked as a belief distribution.
(b) Experts propose their solutions for a scenario, which are combined into a mixture of experts. (c) Residual policy takes in
the belief and ensemble of experts’ proposal and returns a correction to the proposal. (d) The combined BRPO and ensemble
policy is (locally) Bayes-optimal.

performance than when starting from scratch, which we prove
in Section IV and empirically validate in Section V.

Our key contribution is the following:

• We propose BRPO, a scalable Bayesian RL algorithm
for problems with model uncertainty.

• We prove that it monotonically improves upon the expert
ensemble, converging to a locally Bayes-optimal policy.

• We experimentally demonstrate that BRPO outperforms
both the ensemble and existing adaptive RL algorithms.

II. RELATED WORK

POMDP methods. Bayesian reinforcement learning for-
malizes RL where one has a prior distribution over possible
MDPs [13, 41]. However, the Bayes-optimal policy, which
is the best one can do under uncertainty, is intractable to
solve for and approximation is necessary [20]. One way is
to approximate the value function, as done in SARSOP [24]
and PBVI [35]; however, they cannot deal with continous state
actions. Another strategy is to resort to sampling, such as
BAMCP [16], POMCP [42], POMCPOW [45]. However, these
approaches require a significant amount of online computation.

Online approaches forgo acting Bayes-optimally right from
the onset, and instead aim to eventually act optimally. The
question then becomes: how do we efficiently gain informa-
tion about the test time MDP to act optimally? BEB [23]
and POMDP-lite [7] introduce an auxiliary reward term to
encourage exploration and prove Probably-Approximately-
Correct (PAC) optimality. This has inspired work on more
general, non-Bayesian curiosity based heuristics for reward
gathering [1, 5, 19, 33]. Online exploration is also well studied
in the bandit literature, and techniques such as posterior
sampling [30] bound the learner’s regret. UP-OSI [48] predicts
the most likely MDP and maps that to an action. Gimelfarb

et al. [14] learns a gating over multiple expert value functions.
However, online methods can over-explore to unsafe regimes.

Another alternative is to treat belief MDP problems as a
large state space that must be compressed. Peng et al. [34] use
Long Short-Term Memory (LSTM) [18] to encode a history
of observations to generate an action. Methods like BPO [25]
explicitly utilize the belief distribution and compress it to learn
a policy. The key difference between BRPO and BPO is that
BRPO uses an expert, enabling it to scale to handle complex
latent tasks that may require multimodal policies.

Meta-reinforcement Learning. Meta-reinforcement learn-
ing (MRL) approaches train sample-efficient learners by exploit-
ing structure common to a distribution of MDPs. For example,
MAML [10] trains gradient-based learners while RL2 [9] trains
memory-based learners. While meta-supervised learning has
well established Bayesian roots [2, 3], it wasn’t until recently
that meta-reinforcement learning was strongly tied to Bayesian
Reinforcement Learning (BRL) [28, 36]. Nevertheless, even
non-Bayesian MRL approaches address problems pertinent to
BRL. MAESN [17] learns structured noise for exploration. E-
MAML [44] adds an explicit exploration bonus to the MAML
objective. GMPS [27] exploit availability of MDP experts
to partially reduce BRL to IL. Our work is more closely
related to Bayesian MRL approaches. MAML-HB [15] casts
MAML as hierarchical Bayes and improves posterior estimates.
BMAML [47] uses non-parametric variational inference to
improve posterior estimates. PLATIPUS [11] learns a parameter
distribution instead of a fixed parameter. PEARL [38] learns
a data-driven Bayes filter across tasks. In contrast to these
approaches, we use experts at test time, learning only to
optimally correct them.

Residual Learning. Residual learning has its foundations
in boosting [12] where a combination of weak learners, each



learning on the failures of previous, make a strong learner. It
also allows for injecting priors in RL, by boosting off of hand-
designed policies or models. Prior work has leveraged known
but approximate models by learning the residual between the
approximate dynamics and the discovered dynamics [31, 32, 4].
There has also been work on learning residual policies over
hand-defined ones for solving long horizon [43] and complex
control tasks [21]. Similarly, our approach starts with a useful
initialization (via experts) and learns to improve via Bayesian
reinforcement learning.

III. PRELIMINARIES: BAYESIAN REINFORCEMENT
LEARNING

We are interested in the performance of an RL agent under
model uncertainty, in which the latent model gets reset at
the beginning of each episode. As discussed in Section I,
this problem can be formulated as model-based Bayesian
Reinforcement Learning (BRL). Formally, the problem is
defined by a tuple 〈S,Φ, A, T,R, P0, γ〉, where S is the
observable state space of the underlying MDPs, Φ is the latent
space, and A is the action space. T and R are the transition and
reward functions parameterized by φ. The initial distribution
over (s, φ) is given by P0 : S×Φ→ R+, and γ is the discount.

Since the latent variable is not observable, Bayesian RL
considers the long-term expected reward with respect to the
uncertainty over φ rather than the true (unknown) value of φ.
Uncertainty is represented as a belief distribution b ∈ B over
latent variables φ. The Bayes-optimal action value function is
given by the Bellman equation:

Q(s, b, a) = R(s, b, a)

+ γ
∑

s′,b′

P (s′, b′|s, b, a) max
a′

Q(s′, b′, a′) (1)

where R(s, b, a) =
∑
φ∈Φ b(φ)R(s, φ, a) and P (s′|s, b, a) =∑

φ∈Φ b(φ)P (s′|s, φ, a). The posterior update P (b′|s, b, a)
is computed recursively, starting from initial belief b0.
b′(φ′|s, b, a, s′) = η

∑
φ∈Φ b(φ)T (s, φ, a, s′, φ′) where η is the

normalizing constant, and the transition function is defined as
T (s, φ, a, s′, φ′) = P (s′|s, φ, a)P (φ′|s, φ, a, s′).

While some terminology is shared with online RL algorithms
(e.g. Posterior Sampling Reinforcement Learning [29]), that
setting assumes latent variables are fixed for multiple episodes.
We refer the reader to Appendix C for further discussion.

IV. BAYESIAN RESIDUAL POLICY OPTIMIZATION (BRPO)

Bayesian Residual Policy Optimization relies on an ensemble
of clairvoyant experts where each expert solves a latent MDP.
This is a flexible design parameter with three guidelines. First,
the ensemble must be fixed before training begins. This fixes
the residual belief MDP, which is necessary for theoretical
guarantees (Section IV-C). Next, the ensemble should return
its recommendation quickly since it will be queried online
at test time. Practically, we have observed that this factor is
often more important than the strength of the initial ensemble:
even weaker ensembles can provide enough of a head start
for residual learning to succeed. Finally, when the belief has

Algorithm 1 Bayesian Residual Policy Optimization

Require: Bayes filter ψ, belief b0, prior P0, residual policy
πr0 , expert πe, horizon T , nitr, nsample

1: for i = 1, 2, · · · , nitr do
2: for n = 1, 2, · · · , nsample do
3: Sample latent MDP M: (s0, φ0) ∼ P0

4: τn ← Simulate(πri−1
, πe, b0, ψ,M, T )

5: πri ← BatchPolicyOpt(πri−1 , {τn}
nsample
n=1 )

6: return πrbest

7: procedure SIMULATE(πr, πe, b0, ψ,M, T )
8: for t = 1, · · · , T do
9: aet ∼ πe(st, bt) // Expert recommendation

10: art ∼ πr(st, bt, aet) // Residual policy
11: at ← art + aet
12: Execute at on M, receive rt+1, observe st+1

13: bt+1 ← ψ(st, bt, at, st+1) // Belief update
14: τ ← (s0, b0, ar0 , r1, s1, b1, · · · , sT , bT )
15: return τ

collapsed to a single latent MDP, the resulting recommendation
must follow the corresponding expert. In general, the ensemble
should become more reliable as entropy decreases.

BRPO performs batch policy optimization in the residual
belief MDP, producing actions that continuously correct the en-
semble recommendations. Intuitively, BRPO enjoys improved
data-efficiency because the correction can be small when the
ensemble is effective (e.g., when uncertainty is low or when
the experts are in agreement). When uncertainty is high, the
agent learns to override the ensemble, reducing uncertainty
and taking actions robust to model uncertainty.

A. Ensemble of Clairvoyant Experts

For simplicity of exposition, assume the Bayesian RL
problem consists of k underlying latent MDPs, φ1, ..., φk. The
ensemble policy maps the state and belief to a distribution over
actions πe : S ×B → P (A). It combines clairvoyant experts
π1, · · · , πk, one for each latent variable φi. Each expert can be
computed via single-MDP RL (or optimal control, if transition
and reward functions are known by the experts).

There are various strategies to produce an ensemble from
a set of experts. The ensemble πe could be the maximum a
posteriori (MAP) expert: πe = arg maxb(φ) πφ. This particular
ensemble allows BRPO to solve tasks with infinitely many
latent MDPs, as long as the MAP expert can be queried online.
It can also be a weighted sum of expert actions, which turns
out to be the MAP action for Gaussian policies (Appendix D).

While these belief-aware ensembles are easy to attain, they
are not Bayes-optimal. Since each clairvoyant expert assumes
a perfect model, the ensemble does not take uncertainty
reducing actions nor is it robust to model uncertainty. Instead of
constructing an ensemble of experts, one could approximately
solve the BRL problem with a POMDP solver and perform
residual learning on this policy. While the initial policy would
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Fig. 3: Bayesian residual policy network architecture.

be much improved, state-of-the-art online POMDP solvers are
expensive and would be slow at test time.

B. Bayesian Residual Policy Learning

Our algorithm is summarized in Algorithm 1. In each training
iteration, BRPO collects trajectories by simulating the current
policy on several MDPs sampled from the prior distribution.
At every timestep of the simulation, the ensemble is queried
for an action recommendation (Line 9), which is summed with
the correction from the residual policy network (Figure 3) and
executed (Line 10-12). The Bayes filter updates the posterior
after observing the resulting state (Line 13). The collected
trajectories are the input to a policy optimization algorithm,
which updates the residual policy network. Note that only
residual actions are collected in the trajectories (Line 14).

The BRPO agent effectively experiences a different MDP:
in this new MDP, actions are always shifted by the ensemble
recommendation. We formalize this correspondence between
the residual and original belief MDPs in the next section, en-
abling BRPO to inherit the monotonic improvement guarantees
from existing policy optimization algorithms.

C. BRPO Inherits Motononic Improvement Guarantees

In this section, we prove that BRPO guarantees monotonic
improvement on the expected return of the mixture between
the ensemble policy πe and the initial residual policy πr0 . The
following arguments apply to all MDPs, not just belief MDPs.
For clarity of exposition, we have omitted the belief from the
state and defer all proofs to Appendix A.

First, we observe that πr operates on its own residual MDP,
and that the monotonic guarantee holds in this residual MDP.
Then, we show that the monotonic guarantee on the residual
MDP can be transferred to the original MDP by showing that
the probability of a state-sequence is equal in both MDPs.

Let M = 〈S,A, T,R, P0〉 be the original MDP. For
simplicity, assume that R depends only on states.1 Every πe
for M induces a residual MDP Mr = 〈S,Ar, Tr, R, P0〉 that
is equivalent to M except for the action space and transition
function.2 For every residual action ar, Tr marginalizes over
all expert recommendations ae ∼ πe(s).

Tr(s
′|s, ar) =

∑

ae

T (s′|s, ae + ar)πe(ae|s) (2)

1If R is dependent on actions, we can define Rr analogous to (2).
2 Ar = A as long as the expert action space contains the null action.

Let πr(ar|s, ae) be a residual policy. The final policy π
executed on M is a mixture of πr and πe, since actions are
sampled from both policies and summed.

π(a|s) =
∑

ar

πe(a− ar|s)πr(ar|s, a− ar) (3)

Lemma 1. BRPO monotonically improves the expected return
of πr in Mr, i.e.,

J(πri+1
) ≥ J(πri)

with J(πr) = Eτ∼(πr,Mr)[R(τ)], where τ ∼ (πr,Mr)
indicates that τ is a trajectory with actions sampled from
πr and executed on Mr.

Next, we show that the performance of πr on the residual
MDP Mr is equivalent to the BRPO agent’s actual perfor-
mance on the original MDP M.

Theorem 2. A residual policy πr executed on Mr has the
same expected return as the mixture policy π executed on M.

Eτ∼(π,M)[R(τ)] = Eτr∼(πr,Mr)[R(τr)]

We first show that the probability of observing a sequence
of states is equal in both MDPs, which immediately leads to
this theorem.

Let ξ = (s0, s1, ..., sT−1) be a sequence of states. Let
α = {τ} be the set of all length T trajectories (state-action
sequences) in M with ξ as the states, and β = {τr} be
analogously defined for a set of trajectories in Mr. Note that
each state-sequence ξ may have multiple corresponding state-
action trajectories {τ}, since multiple action-sequences can
have the same state-sequence.

Lemma 3. The probability of ξ is equal when executing π on
M and πr on Mr, i.e.,

π(ξ) =
∑

τ∈α
π(τ) =

∑

τr∈β

πr(τr) = πr(ξ)

Since reward depends only on the states, R(τ) = R(τr) =
R(ξ) for all τ ∈ α, τr ∈ β. Hence, Lemma 3 immediately
implies Theorem 2.

Eτ [R(τ)] =
∑

τ

R(τ)π(τ) =
∑

ξ

R(ξ)π(ξ)

=
∑

ξ

R(ξ)πr(ξ) =
∑

τr

R(τr)πr(τr) = Eτr [R(τr)]

Finally, we prove our main theorem that Lemma 1, the
monotonic improvement guarantee on Mr, transfers to M.
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Fig. 4: Setup for CrowdNav and ArmShelf. In CrowdNav,
the goal for the agent (red) is to go upward without colliding
with pedestrians (all other colors). In ArmShelf, the goal is
to reach for the can under noisy sensing. See Section V-A.

Theorem 4. BRPO monotonically improves upon the mixture
between ensemble policy πe and initial residual policy πr0 ,
eventually converging to a locally optimal policy.

In summary, BRPO tackles RL problems with model
uncertainty by building on an ensemble of clairvoyant experts
(queried online) and optimizing a policy on the residual MDP
induced by the ensemble (trained offline, queried online). Even
suboptimal ensembles often provide a strong baseline, resulting
in data-efficient learning and high returns. We empirically
evaluate this hypothesis in Section V.

V. EXPERIMENTAL RESULTS

We choose problems that highlight common challenges for
robots with model uncertainty:
• Costly sensing is required to infer the latent MDP.
• Uncertainty reduction and robustness are critical.
• Solutions for each latent MDP are significantly different.

In all domains that we consider, BRPO improves on the
ensemble’s recommendation and significantly outperforms
adaptive-RL baselines that do not leverage experts. Qualitative
evaluation shows that robust Bayes-optimal behavior naturally
emerges from training.

A. Environments

Here we give a brief description of the problem environments.
Appendix B contains implementation details.

Crowd Navigation. Inspired by Cai et al. [6], an au-
tonomous agent must quickly navigate past a crowd of people
without collisions. Six people cross in front of the agent at
fixed speeds, three from each side (Figure 4a). Each person
noisily walks toward its latent goal on the other side, which
is sampled uniformly from a discrete set of destinations. The
agent observes each person’s speed and position to estimate the
belief distribution for each person’s goal. The belief for each
person is drawn as a set of vectors in Figure 4a, where length
indicates speed and transparency indicates belief probability of
each goal. There is a single expert which uses model predictive

control: each walker is simulated toward a belief-weighted
average goal position, and the expert selects cost-minimizing
steering angle and acceleration.

Cartpole. In this environment, the agent’s goal is to
keep the cartpole upright for as long as possible. The latent
parameters are cart mass and pole length (Figure 4), uniformly
sampled from [0.5, 2.0]kg × [0.5, 2.0]m. There is zero-mean
Gaussian noise on the control. The agent’s estimator is a
very coarse 3 × 3 discretization of the 2D continuous latent
space, and the resulting belief is a categorical distribution
over that grid. In this environment, each expert is a Linear-
Quadratic Regulator (LQR) for the center of each grid square.
The ensemble recommendation used by BRPO is simply the
belief-weighted sum of experts, as described in Section IV-A.

Object Localization. In the ArmShelf environment, the
agent must localize an object without colliding with the
environment or object. The continuous latent variable is the
object’s pose, which is anywhere on either shelf of the pantry
(Figure 4b). The agent receives a noisy observation of the
object’s pose, which is very noisy when the agent does not
invoke sensing. Sensing can happen as the agent moves, and is
less noisy the closer the end-effector is to the object. The agent
uses an Extended Kalman Filter to track the object’s pose. The
ensemble is the MAP expert, as described in Section IV-A.
It takes the MAP object pose and proposes a collision-free
movement toward the object.

Latent Goal Mazes. In the Maze4 and Maze10, the agent
must identify which latent goal is active. At the beginning of
each episode, the latent goal is set to one of four or ten goals.
The agent is rewarded highly for reaching the active goal
and severely penalized for reaching an inactive goal. Sensing
can happen as the agent moves; the agent receives a noisy
measurement of the distance to the goal, with noise proportional
to the true distance. Each expert proposes an action (computed
via motion planning) that navigates to the corresponding goal.
However, they are unaware of the penalty that corresponds to
passing through an inactive goal. The ensemble recommends
the belief-weighted sum of the experts’ suggestions.

Doors. There are four possible doors to the next room of
the Door4 environment. At the beginning of each episode,
each door is opened or closed with 0.5 probability. To check
the doors, the agent can either sense or crash into them (which
costs more than sensing). Sensing is permitted while moving,
and returns a noisy binary vector for all four doors with
exponentially decreasing accuracy proportional to the distance
to each door. Crashing returns an accurate indicator of the
door it crashed into. Each expert navigates directly through the
closest open door, and the ensemble recommends the belief-
weighted sum of experts.

B. BRPO Improves Ensemble, Outperforms Adaptive Methods

We compare BRPO to adaptive RL algorithms that consider
the belief over latent states: BPO [25] and UP-MLE, a
modification to Yu et al. [48] that augments the state with the
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Fig. 5: Training curves. BRPO (red) dramatically outperforms agents that do not leverage expert knowledge (BPO in purple,
UP-MLE in green), and significantly improves the ensemble of experts (black).
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Fig. 6: Sensing locations. In Maze4 and Maze10, sensing is
dense around the starting regions (the bottom row in Maze4
and center in Maze10) and in areas where multiple latent
goals are nearby. In Door4, BRPO only senses when close
to the doors, where the sensor is most accurate.

most likely estimate from the Bayes filter3. Neither approach is
able to incorporate experts. We also compare with the ensemble
of experts baselines. For experiments which require explicit
sensing actions (ArmShelf, Maze4, Maze10, Door4), the
ensemble will not take any sensing actions (as discussed in
Section IV), so we strengthen it by sensing with probability 0.5
at each timestep. More sophisticated sensing strategies can be
considered but require more task-specific knowledge to design;
see Appendix G for more discussion.

Figure 5 compares the training performance of all algorithms
across the six environments. In Section IV-C, we proved
monotonic improvement when optimizing an unconstrained
objective; the clipped surrogate PPO objective that BRPO
uses still yields improvement from the initial policy. Note that
BRPO’s initial policy does not exactly match the ensemble:
the random initialization for the residual policy network adds
zero-mean noise around the ensemble policy. This may result
in an initial drop relative to the ensemble, as in Figure 5c and
Figure 5d.

On the wide variety of problems we have considered,
BRPO agents perform dramatically better than BPO and
UP-MLE agents. BPO and UP-MLE were unable to match
the performance of BRPO, except on the simple Cartpole
environment. This seems to be due to the complexity of the
latent MDPs, discussed further in Section H. In fact, for
Maze4 and Maze10, we needed to modify the reward function
to encourage information-gathering for BPO and UP-MLE;
without such reward bonuses, they were unable to learn any

3This was originally introduced in Lee et al. [25].

meaningful behavior. Even with the bonus, these agents only
partially learn to solve the task. We study the effect that such
a reward bonus would have on BRPO in Appendix F. For the
simpler Cartpole environment, both BPO and UP-MLE
learned to perform optimally but required much more training
time than BRPO.

VI. DISCUSSION AND FUTURE WORK

In the real world, robots must deal with uncertainty, either
due to complex latent dynamics or task specifics. Because
uncertainty is an inherent part of these tasks, we can at best
aim for optimality under uncertainty, i.e., Bayes optimality.
Existing Bayesian RL algorithms or POMDP solvers do not
scale well to problems with complex continuous latent MDPs
or a large set of possible MDPs.

Our algorithm, Bayesian Residual Policy Optimization,
builds on an ensemble of experts by operating within the
resulting residual belief MDP. We prove that this strategy
preserves guarantees, such as monotonic improvement, from
the underlying policy optimization algorithm. The scalability of
policy gradient methods, combined with task-specific expertise,
enables BRPO to quickly solve a wide variety of complex
problems, such as navigating through a crowd of pedestrians.
BRPO improves on the original ensemble of experts and
achieves much higher rewards than existing Bayesian RL
algorithms by sensing more efficiently and acting more robustly.

Although out of scope for this work, a few key challenges
remain. First is an efficient construction of an ensemble of
experts, which becomes particularly important for continuous
latent spaces with infinitely many MDPs. Infinitely many
MDPs do not necessarily require infinite experts, as many
may converge to similar policies. An important future direction
is subdividing the latent space and computing a qualitatively
diverse set of policies [26]. Another challenge is developing
an efficient Bayes filter, which is an active research area.
In certain occasions, the dynamics of the latent MDPs may
not be accessible, which would require a learned Bayes
filter. Combined with a tractable, efficient Bayes filter and
an efficiently computed set of experts, we believe that BRPO
will provide an even more scalable solution for BRL problems.
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APPENDIX

A. Proofs of theorems and lemmas

Proof of Lemma 1. BRPO uses PPO for optimization [40].
PPO’s clipped surrogate objective approximates the following
objective,

max
θ

Ê
[
πθ(at|st)
πθold(at|st)

Ât − β ·KL(πθold(·|st), πθ(·|st))
]
, (4)

where πθ is a policy parameterized by θ and πθold is the
policy in the previous iteration, which correspond to the
current and previous residual policies πri , πri−1

in Algorithm 1.
Â is the generalized advantage estimate (GAE) and KL
is the Kullback–Leibler divergence between the two policy
distributions. PPO proves monotonic improvement for the
policy’s expected return by bounding the divergence from
the previous policy in each update. This guarantee only holds
if both policies are applied to the same residual MDP, i.e. the
ensemble is fixed.

Proof of Lemma 3. (i) Base case, T = 0. It holds trivially
since M and Mr share the same initial state distribution P0.
(ii) Assume it holds for T = t. Pick any ξ and let its last
element be s. Consider an s′-extended sequence ξ′ = (ξ, s′).
Conditioned on ξ, the probability of ξ′ is equal in (π,M)
and (πr,Mr), which we can see by marginalizing over all
state-action sequences:

∑

τ ′r

πr(τ
′
r|ξ) =

∑

ar

πr(ar|s)Tr(s′|s, ar) (5)

=
∑

ar

πr(ar|s)
∑

a

T (s′|s, a)πe(a− ar|s) (6)

=
∑

a

∑

ar

πr(ar|s)πe(a− ar|s)T (s′|s, a) (7)

=
∑

a

π(a|s)T (s′|s, a) (8)

=
∑

τ ′

π(τ ′|ξ) (9)

The transition from (5) to (6) comes from (2) and (7) to (8)
comes from (3). It follows that,

π(ξ′) = π(ξ)
∑

τ ′

π(τ ′|ξ) = πr(ξ)
∑

τ ′r

πr(τ
′
r|ξ) = πr(ξ

′),

which proves the lemma. Note that this proof directly leads to
the proof of Theorem 2.

Proof of Theorem 4. From Lemma 1, we have that πr
monotonically improves on the residual MDP Mr. From
Theorem 2, monotonic improvement of πr on Mr implies
monotonic improvement of the mixture policy π on the actual
MDP M. If the initial residual policy’s actions are small, the
expected return of the mixture policy π on M is close to that
of the ensemble πe.

B. Experimental Environments

Crowd Navigation. At the beginning of the episode, initial
pedestrian positions are sampled uniformly along the left and
right sides of the environment. Speeds are sampled uniformly
between 0.1 and 1.0 m/s. The agent observes each person’s
speed and position to estimate the goal distribution.

The agent starts at the bottom of the environment, with
initial speed sampled uniformly from 0 to 0.4 m/s. The agent
controls acceleration and steering angle, bounded between
±0.12 m/s2 and ±0.1 rad. Pedestrians are modeled as a 1m
diameter circle. The agent is modeled as a rectangular vehicle
of 0.5 m width and 2 m length. A collision results in a terminal
cost of 100 · (2v)2 + 0.5. Successfully reaching the top of the
environment produces terminal reward of 250, while navigating
to the left or right side results in terminal cost of 1000. A per
timestep penalty of 0.1 encourages the agent to complete the
episode quickly.

Cartpole. The cartpole initializes with small initial velocity
around the upright position. The environment terminates when
the pole is more than 1.2 rad away from the vertical upright
position or the cart is 4.0 m away from the center. The agent
is rewarded by 1 for every step the cartpole survives. The
environment has finite horizon of 500 steps.

Object Localization. The agent can control the end-
effector in the (x, y, z) directions. The goal is to move the
hand to the object without colliding with the environment or
object. The agent observes the top and bottom shelf poses,
end-effector pose, arm configuration, and the noise scale. The
noise scale is the standard deviation of the Gaussian noise on
the agent’s observation of the object’s pose. Without sensing,
the noise is very large: w ∼ N (0, 5.02) where the width of
the shelf is only 0.35 m, When sensing is invoked, the noise
is reduced to w ∼ N (0, d2) where d is the distance between
the object and the end-effector.

Latent Goal Mazes. The agent observes its current
position, velocity, and distance to all latent goals. If sensing
is invoked, it also observes the noisy distance to the goal. In
addition, the agent observes the categorical belief distribution
over the latent goals. In Maze4, reaching the active goal
provides a terminal reward of 500, while reaching an incorrect
goal gives a penalty of 500. The task ends when the agent
receives either the terminal reward or penalty, or after 500
timesteps. In Maze10, the agent receives a penalty of 50 and
continues to explore after reaching an incorrect goal.

Doors. To check the doors, the agent can either sense
(−1) or crash into them (−10). At every step, the agent
observes its position, velocity, distance to goal, and whether
it crashed or passed through a door. In addition, the agent
observes the categorical distribution over the 24 = 16 possible
door configurations (from the Bayes filter) and the ensemble’s
recommendation. The agent receives a terminal reward of 100
if it reaches the goal within 300 timesteps.



C. Bayesian Reinforcement Learning and Posterior Sampling

Posterior Sampling Reinforcement Learning (PSRL) [29] is
an online RL algorithm that maintains a posterior over latent
MDP parameters φ. However, the problem setting it considers
and how it uses this posterior are quite different than what we
consider in this paper.

In this work, we are focused on scenarios where the agent
can only interact with the test MDP for a single episode;
latent parameters are resampled for each episode. The PSRL
regret analysis assumes MDPs with finite horizons and repeated
episodes with the same test MDP, i.e. the latent parameters are
fixed for all episodes.

Before each episode, PSRL samples an MDP from its poste-
rior over MDPs, computes the optimal policy for the sampled
MDP, and executes it on the fixed test MDP. Its posterior
is updated after each episode, concentrating the distribution
around the true latent parameters. During this exploration
period, it can perform arbitrarily poorly. Furthermore, sampling
a latent MDP from the posterior determinizes the parameters;
as a result, there is no uncertainty in the sampled MDP, and
the resulting optimal policies that are executed will never take
sensing actions.

The Gap between Bayes Optimality and Posterior Sam-
pling. We present a toy problem to highlight the distinction
between them.

Consider a deterministic tree-like MDP (Figure 7). Reward
is received only at the terminal leaf states: one leaf contains
a pot of gold (R = 100) and all others contain a dangerous
tiger (R = −10). All non-leaf states have two actions, go left
(L) and go right (R). The start state additionally has a sense
action (S), which is costly (R = −0.1) but reveals the exact
location of the pot of gold. Both algorithms are initialized with
a uniform prior over the N = 2d possible MDPs (one for each
possible location of the pot of gold).

To contrast the performance of the Bayes-optimal policy and
posterior sampling, we consider the multi-episode setting where
the agent repeatedly interacts with the same MDP. The MDP
is sampled once from the uniform prior, and agents interact
with it for T episodes. This is the setting typically considered
by posterior sampling (PSRL) [29].

Before each episode, PSRL samples an MDP from its
posterior over MDPs, computes the optimal policy, and executes
it. After each episode, it updates the posterior and repeats.
Sampling from the posterior determinizes the underlying latent
parameter. As a result, PSRL will never produce sensing actions
to reduce uncertainty about that parameter because the sampled
MDP has no uncertainty. More concretely, the optimal policy
for each tree MDP is to navigate directly to the gold without
sensing; PSRL will never take the sense action. Thus, PSRL
makes an average of N−1

2 mistakes before sampling the correct
pot of gold location and the cumulative reward over T episodes
is

−10
(
N−1

2

)
︸ ︷︷ ︸
mistakes

+100
(
T − N−1

2

)
︸ ︷︷ ︸

pot of gold

(10)

🐯 🐯 🐯

Depth d

L R

S👀

Fig. 7: A tree-like MDP that highlights the distinction between
BRL and PSRL.

In the first episode, the Bayes-optimal first action is to sense. All
subsequent actions in this first episode navigate toward the pot
of gold, for an episode reward of −0.1+100. In the subsequent
T − 1 episodes, the Bayes-optimal policy navigates directly
toward the goal without needing to sense, for a cumulative
reward of 100T−0.1. The performance gap between the Bayes-
optimal policy and posterior sampling grows exponentially with
depth of the tree d.

Practically, a naïve policy gradient algorithm (like BPO)
would struggle to learn the Bayes-optimal policy: it would
need to learn to both sense and navigate the tree to the sensed
goal. BRPO can take advantage of the set of experts, in which
each navigate to their designated leaf. During training, the
BRPO agent only needs to learn to balance sensing with
navigation.

D. Maximum A Posterior as ensemble of experts

One choice for the ensemble policy πe is to se-
lect the maximum a posteriori (MAP) action, aMAP =
arg maxa

∑k
i=1 b(φi)πi(a|s). However, computing the MAP

estimate may require optimizing a non-convex function, e.g.,
when the distribution is multimodal. We can instead maximize
the lower bound using Jensen’s inequality.

log

k∑

i=1

b(φi)πi(a|s) ≥
k∑

i=1

b(φi) log πi(a|s) (11)

This is much easier to solve, especially if log πi(a|s) is convex.
If each πi(a|s) is a Gaussian with mean µi and covariance Σi,
e.g. from TRPO [39], the resultant action is the belief-weighted
sum of mean actions:

a∗ = arg max
a

k∑

i=1

b(φi) log πi(a|s)

=

[
k∑

i=1

b(φi)Σ
−1
i

]−1 k∑

i=1

b(φi)Σ
−1
i µi

E. Ablation Study: Residual Policy Inputs

The BRPO policy takes the belief distribution, state, and
ensemble recommendation as inputs (Figure 3). We considered
two versions of BRPO with different inputs - only recommen-
dation (which implicitly encodes belief), and one with both
recommendation and belief.
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Fig. 8: Ablation study on input features. Including both belief
and recommendation as policy inputs results in faster learning
in Door4.
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Fig. 9: Ablation study on information-gathering reward (Equa-
tion 12). BRPO is robust to information-gathering reward.

The results show that providing both belief and recommenda-
tion as inputs to the policy are important (Figure 8). Although
BRPO with only the recommendation performs comparably
to BRPO with both inputs on Maze4 and Maze10, the one
with both inputs produce faster learning on Door4.

F. Ablation Study: Information-Gathering Reward Bonuses

Because BRPO maximizes the Bayesian Bellman equa-
tion (Equation 1), exploration is incorporated into its long-
term objective. As a result, auxiliary rewards to encourage
exploration are unncessary. However, existing work that does
not explicitly consider the belief has suggested various auxiliary
reward terms to encourage exploration, such as surprisal
rewards [1] or intrinsic rewards [33]. To investigate whether
such rewards benefit the BRPO agent, we augment the reward
function with the following auxiliary bonus from [7]:

r̃(s, b, a) = r(s, b, a) + ε · Eb′ [‖b− b′‖1] (12)

where ‖b − b′‖1 =
∑k
i=1 |b(φi) − b′(φi)| rewards change in

belief.
Figure 9 summarizes the performance of BRPO when train-

ing with ε = 0, 10, 100. Too much emphasis on information-
gathering causes the agent to over-explore and therefore
underperform. In Door4 with ε = 100, we qualitatively
observe that the agent crashes into the doors more often.
Crashing significantly changes the belief for that door; the
huge reward bonus outweighs the penalty of crashing from the
environment.

We find that BPO and UP-MLE are unable to learn without
an exploration bonus on Maze4, Maze10, and Door4. We
used ε = 1 for Maze4 and Door4, and ε = 100 for Maze10.

Upon qualitative analysis, we found that the bonus helps BPO
and UP-MLE learn to sense initially, but the algorithms are
unable to make further progress. We believe that this is because
solving the latent mazes is challenging.

In addition to this study, we have performed two ad-
ditional ablations on input features to the residual policy
(Appendix E) and hand-tuned ensembles that are better at
sensing (Appendix G). Including both the belief and ensemble
recommendation as inputs to the residual policy produces faster
learning. BRPO takes advantage of the stronger ensemble and
continues to improve on that better baseline.

G. Ablation Study: Better Sensing Ensemble

The ensemble we used for training BRPO in Figure 5
randomly senses with probability 0.5. A more effective sensing
ensemble baseline policy could be designed manually, and
used as the initial policy for the BRPO agent to improve
on. Note that in general, designing such a policy can be
challenging: it requires either task-specific knowledge, or
solving an approximate Bayesian RL problem. We bypass
these requirements by using BRPO.

On the Maze10 environment, we have found via offline
tuning that a more effective ensemble baseline agent senses
only for the first 150 of 750 timesteps. Table I shows that
BRPO results in higher average return and success rate. The
performance gap comes from the suboptimality of the ensemble
recommendation, as experts are unaware of the penalty for
reaching incorrect goals.

BRPO RandomSensing BetterSensing

Avg. Return 465.7 ± 4.7 409.5 ± 10.8 416.3 ± 9.4
Success Rate 100% - 96.3%

TABLE I: Comparison of BRPO and ensembles on Maze10.

H. Qualitative Behavior Analysis

Figure 10 shows some representative trajectories taken by
BRPO agents. Across multiple environments (CrowdNav,
Maze4, Maze10), we see that BRPO agent adapts to the
evolving posterior. As the posterior over latent goals updates,
the agent shifts directions. While this rerouting partly emerges
from the ensemble policies as the posterior sharpens, BRPO’s
residual policy reduces uncertainty (Maze4, Maze10) and
pushes the agent to navigate faster, resulting in higher perfor-
mance than the ensembles.

For Maze4, Maze10 and Door4, we have visualized where
the agent invokes explicit sensing (Figure 6). For Maze4 and
Maze10, the BRPO agent learns to sense when goals must be
distinguished, e.g. whenever the road diverges. For Door4, it
senses when that is most cost-effective: near the doors, where
accuracy is highest. This results in a rather interesting policy
(Figure 10c). The agent dashes to the wall, senses only once
or twice, and drives through the closest open door. The BRPO
agent avoids crashing in almost all scenarios.



(a) CrowdNav. Arrows are the directions to discrete latent goals. Each arrow’s transparency indicate the posterior probability of the
corresponding goal, and its length indicate the speed. The agent changes its direction as it forsees collision in its original plan.

(b) Latent goal mazes with four (Maze4) and ten (Maze10) possible goals. The agent senses as it navigates, changing its direction as goals
are deemed less likely (more transparent). We have marked the true goal with red in the last frame for clarity.

(c) Door4. The agent senses only when it is near the wall with doors, where sensing is most accurate. The transparency of the red bars
indicates the posterior probability that the door is blocked. With sensing, the agent notices that the third door is likely to be open.

Fig. 10: BRPO policy keyframes. Best viewed in color.
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