
©Copyright 2020

Gilwoo Lee

Scalable Bayesian Reinforcement Learning

Gilwoo Lee

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2020

Reading Committee:

Siddhartha S. Srinivasa, Chair

Byron Boots

Debadeepta Dey

Program Authorized to Offer Degree:
Computer Science & Engineering

University of Washington

Abstract

Scalable Bayesian Reinforcement Learning

Gilwoo Lee

Chair of the Supervisory Committee:
Boeing Endowed Professor Siddhartha S. Srinivasa

Computer Science & Engineering

Informed and robust decision making in the face of uncertainty is critical for robots operat-

ing in unstructured environments. We formulate this problem as Bayesian Reinforcement

Learning (BRL) over latent Markov Decision Processes (MDPs). While Bayes-optimality

is theoretically the gold standard, existing algorithms scale poorly to continuous state and

action spaces. This thesis proposes a set of BRL algorithms that scale to complex control

tasks. Our algorithms build on the following insight: robotics problems have structural priors

that we can use to produce approximate models and experts that the agent can leverage.

First, we propose an algorithm which improves a nominal model and policy with data-

driven semi-parametric learning and optimal control. Then, we look into more general BRL

tasks with complex latent models. We propose algorithms that combine batch reinforcement

learning algorithms with experts to scale to complex latent tasks. Finally, through simulated

and physical experiments, we demonstrate that our algorithms drastically outperform existing

adaptive RL methods.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . vi

Chapter 1: Introduction . 1

1.1 Contributions . 4

Chapter 2: Related Work . 5

2.1 Overview . 5

2.2 Optimal Control . 7

2.3 Belief-Space Reinforcement Learning . 8

2.4 Robust (Adversarial) Reinforcement Learning 9

2.5 Adaptive Policy Methods . 9

2.6 Residual Learning . 10

2.7 Bayesian Meta-reinforcement Learning . 10

2.8 Bayesian Reinforcement Learning and Posterior Sampling 11

Chapter 3: GP-Iterative Linear Quadratic Control 14

3.1 Introduction . 14

3.2 Approach . 16

3.3 Experimental Results . 18

3.4 Discussion . 23

Chapter 4: Bayesian Policy Optimization . 24

4.1 Introduction . 24

4.2 Preliminaries: Bayesian Reinforcement Learning 26

4.3 Bayesian Policy Optimization . 28

i

4.4 Experimental Results . 31

4.5 Discussion . 39

Chapter 5: Bayesian CPACE . 41

5.1 Introduction . 41

5.2 BCPACE: Continuous PAC Optimal Exploration in Belief Space 43

5.3 Experimental Results . 51

5.4 Discussion . 53

Chapter 6: Bayesian Residual Q-Learning . 55

6.1 Introduction . 55

6.2 Bayesian Residual Q-Learning . 56

6.3 Experimental Results . 59

6.4 Discussion . 61

Chapter 7: Bayesian Residual Policy Optimization 62

7.1 Introduction . 62

7.2 Bayesian Residual Policy Optimization (BRPO) 64

7.3 Experimental Results . 70

7.4 Discussion . 80

Chapter 8: Conclusion . 83

ii

LIST OF FIGURES

Figure Number Page

1.1 Various robotic tasks that require inferring latent properties of the object,
goals of other agents, or human intentions. 2

2.1 A tree-like MDP that highlights the distinction between BRL and PSRL. . . 12

3.1 GP-ILQG overview . 15

3.2 Cartpole swing-up. 19

3.3 Quadrotor control . 20

4.1 An overview of Bayesian Policy Optimization. The policy is simulated on
multiple latent models. At each timestep of the simulation, a black-box
Bayes filter updates the posterior belief and inputs the state-belief to the
policy (Figure 4.1a). Belief (b) and state (s) are independently encoded before
being pushed into the policy network (Figure 7.2) 26

4.2 (a) Comparison of BPO with belief-agnostic, robust RL algorithms. BPO
significantly outperforms benchmarks when belief-awareness and explicit in-
formation gathering are necessary (Tiger, LightDark). It is competitive with
UP-MLE when passive estimation or universal robustness is sufficient (Chain,
MuJoCo). (b) Scalability of BPO with respect to latent state space discretiza-
tion for the Chain problem. 33

4.3 Visualization of different algorithms on the LightDark environment. The
dashed line indicates the light source. Blue circles are one standard deviation
for per-step estimates. The BPO policy moves toward the light to obtain a
better state estimate before moving toward the goal. 35

4.4 (a) Comparison of BPO and TRPO trained on the nominal environment for
a different environment. The task is to move to the right along the x-axis.
However, the model at test time differs from the one TRPO trained with: one
leg is 20% longer, another is 20% shorter. (b) Comparison of average entropy
per timestep by BPO and UP-MLE. The belief distribution collapses more
quickly under the BPO policy. (c) Belief distribution at t = 20 during a BPO
rollout. 37

iii

4.5 Pairwise performance comparison of algorithms on MuJoCo BAMDPs. Each
point represents an MDP, and its (x, y)-coordinates correspond to the long-
term reward by (baseline, BPO). The farther a point is above the line y = x,
the more BPO outperforms that baseline. Colors indicate which algorithm
achieved higher reward: BPO (red), EPOpt (green), UP-MLE (blue), or
TRPO (purple). 37

5.1 The BCPACE algorithm for BAMDPs. The vertices of the belief simplex
correspond to the latent MDPs constituting the BAMDP model, for which we
can precompute the optimal Q-values. During an iteration of BCPACE, it
executes its greedy policy from initial belief b0, which either never escapes the
known belief MDP Belief MDPK or leads to an unknown sample. Adding
the unknown sample to the sample set may expand the known set K and
the known belief MDP Belief MDPK . The algorithm terminates when the
optimally reachable belief space is sufficiently covered. 42

5.2 With greedy exploration, only best actions are tightly approximated (Fig-
ure 5.2a). BCPACE takes optimal actions for a continuous BAMDP (Fig-
ure 5.2b). 51

6.1 Network overview. State s is an input to every module, and s′, a′ are the state
and action from the previous step. Red is one example of trained modules per
sample batch. Samples from Mk are only used to train expert k, while the
Residual Q-network is trained with samples from all MDPs. 57

6.2 Tiger. (a) BRQN-FE converges quickly to the optimum. (b) BRQN-LE
produces experts specialized in one MDP, which opens one of the doors
deterministically. 60

6.3 RockSample. Figure from Smith & Simmons (2004). 60

7.1 An overview of Bayesian Residual Policy Optimization. (a) Pedestrian goals are
latent and tracked as a belief distribution. (b) Experts propose their solutions
for a scenario, which are combined into a mixture of experts. (c) Residual
policy takes in the belief and ensemble’s proposal and returns a correction to
the proposal. (d) The combined BRPO and ensemble policy is Bayes-optimal. 63

7.2 Bayesian residual policy network architecture. 64

7.3 Setup for CrowdNav and ArmShelf. In CrowdNav, the goal for the agent (red) is
to drive upward without colliding with pedestrians (other colors). In ArmShelf,
the goal is to reach for the can. 71

iv

7.4 Sensing locations. In Maze4 and Maze10, sensing is dense around the starting
regions (bottom of Maze4, center of Maze10) and where multiple latent goals
(gray, green) are nearby and must be disambiguated. In Door4, BRPO only
senses when close to the doors, where the sensor is most accurate. 71

7.5 Training curves. BRPO dramatically outperforms agents that do not leverage
expert knowledge (BPO, UP-MLE), and significantly improves the ensemble
of experts. 74

7.6 Rollout on CarNav, a modified CrowdNav for the physical MuSHR cars. The
BRPO agent waits, detours, and accelerates around other cars to reach the
goal quickly. 75

7.7 Ablation study on input features. Including both belief and recommendation
results in faster learning in Door4. 78

7.8 Ablation study on information-gathering reward (Equation 7.10). BRPO is
robust to information-gathering reward. 78

7.9 BRPO policy keyframes. Best viewed in color. 82

v

LIST OF TABLES

Table Number Page

2.1 Comparison of various algorithms that handles model uncertainty. See Sec-
tion 2.1 for more discussion. 6

3.1 kv is a constant relating the velocity to an opposite force, caused by rotor drag
and induced inflow. m (kg) is the mass, J (kg m2) is the moment of inertia
matrix, ρ (m) is the distance between the center of mass and the center of the
rotors. 22

4.1 Training parameters . 32

4.2 For the Chain problem, a comparison of the 95% confidence intervals of
average return for BPO vs. other benchmark algorithms. Values for BEETLE,
MCBRL, and Perseus are taken from Wang et al. (2012), which does not report
MCBRL performance in the “tied” setting. 35

5.1 Benchmark results. LightDark (cont.) has continuous state space. BCPACE
is competitive for both discrete and continuous BAMDPs). 52

6.1 RockSample with 95% confidence interval. 60

7.1 Comparison of BRPO and the expert ensemble on the CarNav environment. In
both simulation and on the physical system, BRPO succeeds much more often
and requires less time to navigate because it accelerates when safe. Navigation
time is only measured for successful trials. 76

7.2 Comparison of BRPO and ensembles on Maze10. 80

vi

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Sidd Srinivasa, who has been genuinely supportive

throughout my journey, both as a mentor and a good friend. He has taught me to fearlessly

ask questions, sharpen my thoughts, and explore new research problems. The critical thinking

and passion I have learned from Sidd have become my most valuable asset.

I am grateful to my thesis committee members, Byron Boots, Debadeepta Dey, and Samuel

A. Burden, for their input. Byron, thank you for sharing your knowledge and experience in

machine learning. Dey, thank you for your insightful questions and for being supportive of

my career path. Sam, thank you for your feedback on optimal control. I would also like to

thank Leslie P. Kaelbling, Tomás Lozano-Pérez, and Matthew T. Mason for inviting me to

the fields of robotics and machine learning.

Despite many rumors on how Ph.D. programs can be painful, I have enjoyed this journey,

largely owing to my collaborators and the members of the Personal Robotics Lab. Thanks

especially to Brian and Sanjiban, who have been not only great collaborators but also great

friends. Thanks to Aditya, Rosario, Tapo, Sherdil, Schmittle, Chris M., Kay, William, Patrick,

Ethan, J.S., Hanjun, Amal, Matthew R., and Stefanos with whom I share the joy of being

in Seattle. Many thanks to Mike K. and Jen K. for patiently helping me through my first

year of robot experiments. Thanks to Shushman, Rachel, Aaron J., Shervin, Laura, Chris

D., Matt K., Zita, and Henny, with whom I spent my first two years at the Carnegie Mellon

University.

I would like to thank my family, especially my mother, for the love and support throughout

this journey. My final thanks go to my husband, Youngsun, who has always been supportive.

None of this would have been possible without you.

vii

DEDICATION

To Erin

viii

FUNDING

This thesis contains work partially supported by the National Institute of Health R01

(#R01EB019335), National Science Foundation CPS (#1544797), National Science Founda-

tion NRI (#1637748), the Office of Naval Research, the RCTA, Amazon, and Honda Research

Institute USA. The author is partially supported by Kwanjeong Educational Foundation.

ix

1

Chapter 1

INTRODUCTION

Robots that are deployed in the real world must operate in the face of uncertainty. For

example, a robot that manipulates objects must estimate the physical properties of the

objects, such as mass, shape, and friction coefficients (Figure 1.1a). An autonomous vehicle

must infer the latent goals of other cars to safely navigate around them (Figure 1.1b). A

robot interacting with humans must infer and adapt to latent human intentions (Figure 1.1c).

All of these properties, which define the task and dynamics, are often unobservable or provide

only noisy observations.

One could argue that some of these latent properties can be inferred with system iden-

tification, with which one can build models and generate optimal policies. This is true to

some degree, as sensors and simulators have improved significantly in the past decade. One

would expect simulation-trained policies, combined with high-precision sensors, to transfer

gracefully to the real world.

However, we often observe that simulator-based policies perform poorly in the real world,

even with good system identification. There are two fundamental challenges associated with

the sim-to-real transfer. First, a simulator does not have the perfect model of the real world.

Nonlinear stochasticity and wear and tear are hard to model and therefore often get neglected.

Second, more critically, system identification itself requires active exploration in the real

world, at the risk of damaging the robot or the environment. These challenges require the

agent to handle model uncertainty online, while performing the task.

How do we prepare the agent with such capabilities? In fact, admitting that we will

never know the perfect model is the key. We must prepare the agent as if we would prepare

ourselves for a hiking trip, preparing for various scenarios that may arise on the road. This

2

(a) Object manipulation (b) Autonomous Driving (c) Assistive Feeding

Figure 1.1: Various robotic tasks that require inferring latent properties of the object, goals

of other agents, or human intentions.

leads to the central tenet of our thesis:

Prepare the agent offline to handle uncertainty online optimally.

Depending on what the agent can afford in the real world, there are several strategies that

the agent may pursue. The first case is when the agent can afford real-world failures. Such a

scenario may arise when the agent repeatedly performs a task in a structured environment,

such as pick-and-place in a warehouse. With a recovery system that allows the agent to drop

the items occasionally, the agent can use the failure cases to improve its policy. We propose

one such approach, GP-Iterative Linear Quadratic Control (Chapter 3), which combines

semi-parametric learning with optimal control to improve the model and policy.

The second case is when the robot cannot afford such cost-free interactions. This is a more

likely scenario for robots deployed in less-structured environments, such as autonomous driving

agents on the street. Unfortunately, the agent does not know which latent MDP it interacts

with, preventing it from acting optimally. At best, the agent can be Bayes-optimal, i.e.,

optimal with respect to the uncertainty. The agent must balance two objectives: (1) probing

the system (exploration), and (2) maximizing an expected long-term reward (exploitation).

Model-based Bayesian Reinforcement Learning (Ghavamzadeh et al., 2015) elegantly

3

incorporates uncertainty into this exploration-exploitation dilemma. Here, the agent maintains

a belief, a distribution over the latent parameters. Our prior knowledge over the candidate

models can be represented as the prior distribution. A Bayes-optimal policy often includes

robust and uncertainty-reducing actions, but only to the degree that they maximize task

performance.

In this thesis, we focus on achieving Bayes-optimality in complex control tasks in continuous

state and action spaces. While most control tasks require continuous actions, existing

approaches (Kurniawati et al., 2008; Pineau et al., 2003b) often discretize actions, which must

resort to coarse discretization as the action space grows. State-of-the-art algorithms that

handle continuous actions require heavy computation at test time (Silver & Veness, 2010;

Sunberg & Kochenderfer, 2017), making them unsuitable for control tasks that require fast

and reactive actions. Our approaches find Bayes-optimal policies that are fast and reactive,

making them suitable for application in robotics. Our algorithms are based on the following

key insight:

Robotics problems have structural priors that we can leverage.

First, noting that our prior knowledge of the task domain is materialized as model

priors, we build upon batch reinforcement learning algorithms, such as Proximal Policy

Optimization (Schulman et al., 2017), to sample from the model prior and run the simulation

in batches. By observing how certain actions collapse beliefs while some others result in

undesirable states, the agent learns to take uncertainty-reducing and robust actions, even

without auxiliary information-gathering reward or risk-sensitive cost terms. See Bayesian

Policy Optimization (Chapter 4) and Bayesian Residual Policy Optimization (Chapter 7) for

more discussion.

Second, we use experts derived from model priors to form initial policies. Such initial

policies are substantially better than randomly initialized ones, and therefore significantly

accelerate learning. By utilizing policies that give the agent a head start, the agent focuses

on learning to be Bayesian instead of learning the task from scratch. Bayesian Residual

4

Q-Learning (Chapter 6) and Bayesian Residual Policy Optimization take this approach.

1.1 Contributions

This thesis develops a set of Bayesian Reinforcement Learning algorithms for continuous state

and action spaces. Specifically, we contribute the following algorithms:

• GP-Iterative Linear Quadratic Control (GP-ILQG) combines semiparametric model

learning and robust optimal control.

• Bayesian Policy Optimization (BPO) extends PPO to Bayes-Adaptive Markov Decision

Processes (BAMDPs). We introduce two encoders, one for belief and the other for the

state, to robustly handle large latent spaces.

• Bayesian CPACE (BCPACE) provides PAC-Bayes-optimality as well as a distance

metric for BAMDPs.

• Bayesian Residual Q-Learning (BRQN) uses value-function experts to accelerate Q-

Learning in BAMDPs.

• Bayesian Residual Policy Optimization (BRPO), combines experts’ policies with PPO

via residual learning. We prove that the agent’s policy improves monotonically from

the expert ensemble’s performance.

Most of our algorithms are evaluated on simulated experiments, with the exception of BRPO.

Simulated experiments are carefully selected to highlight common challenges for control tasks

with model uncertainty. Qualitatively, we verify that the learned policies take robust and

uncertainty-reducing actions. Quantitatively, we compare with belief-agnostic RL algorithms

and adaptive RL algorithms and verify that our algorithms outperform the non-Bayesian ones.

Further, we use discrete problems to compare with state-of-the-art discrete BRL algorithms

and verify that our algorithms indeed reach Bayes-optimality. Finally, through physical

experiments on the MuSHR racecar platform (Srinivasa et al., 2019), we show that the

BRPO agent is well-suited for real-robot tasks that require fast and reactive policies.

5

Chapter 2

RELATED WORK

2.1 Overview

A long history of research addresses belief-space reinforcement learning. Here, we highlight

the most relevant work and refer the reader to Ghavamzadeh et al. (2015), Shani et al. (2013),

and Aberdeen (2003) for more comprehensive reviews of the Bayes-Adaptive and Partially

Observable MDP literature.

Table 2.1 compares our algorithms with state-of-the-art algorithms that handle model

uncertainty. SARSOP (Kurniawati et al., 2008) and POMDP-lite (Chen et al., 2016),

POMCPOW (Sunberg & Kochenderfer, 2017) are POMDP algorithms that can be used for

Bayesian RL problems (Section 2.3). EPOpt (Rajeswaran et al., 2017) is a robust RL algo-

rithm (Section 2.4). PSRL (Osband et al., 2013) is an online learning algorithm (Section 2.8).

The top row describes the criteria we believe are essential for Bayesian RL algorithms

for control tasks. The first category is whether the algorithm can handle “continuous state

and action” spaces, which we believe is necessary for control tasks. Many state-of-the-art

algorithms for POMDPs require discretization, which limits their scalability for tasks with

large continuous spaces.

The “multi-modal policies” category contains qualitative evaluation for policy gradient

algorithms, such as EPOpt and BPO, of their empirical results. These algorithms can learn

multi-modal policies in theory, but we often observe that they converge to a smooth, unimodal

policy across multiple latent models.

The “offline learning” category applies to offline policy search algorithms. Policies from

offline learning algorithms can perform poorly if the model prior used in the policy search

is incorrect. However, this is not too concerning, as human experts can provide reasonable

6

Algorithm
Continuous Multi-modal Offline Incorporates Fast

State/Action Policies Learning Uncertainty & Reactive

SARSOP × X X X X

POMDP-lite × X × X ×
POMCPOW X X × X ×

EPOpt X × X × X

PSRL X X × × X

GP-ILQG X × × X X

BPO X × X X X

BCPACE X X X X ×
BRQN × X X X X

BRPO X X X X X

Table 2.1: Comparison of various algorithms that handles model uncertainty. See Section 2.1

for more discussion.

priors with domain-specific knowledge. While online learning algorithms can adapt their

policies and underlying models even if the prior is incorrect, they can produce critical failures

during the exploration. These failures are often not suitable for robot control tasks unless

provided with a safe recovery system.

The “incorporates uncertainty” category applies to algorithms whose policies incorporate

uncertainty in the form of belief distribution. Even when an algorithm makes use of model

uncertainty, their policies may not be Bayes-optimal. For example, EPOpt produces policies

for worst-case scenarios, and PSRL produces optimal policies for sampled models.

Finally, the “fast and reactive” catogory applies to algorithms that do not require much

online computation, such as forward simulation or Bellman update. Often, this is a limiting

factor for online algorithms such as POMCPOW for their application in robotics. Given a

small online computation budget, these algorithms cannot produce Bayes-optimal policies.

7

2.2 Optimal Control

Most model-based reinforcement learning (MBRL) has both model learning (system identifi-

cation) and policy optimization components (Kober et al., 2013). The data for a model comes

either from real world or simulation, and is combined to construct a model via nonlinear

function approximators such as Locally Weighted Regression (Atkeson et al., 1997), Gaussian

Processes (Rasmussen, 2006), or Neural Networks (Narendra & Parthasarathy, 1990). Once

the model is built, a typical policy gradient method computes the derivatives of the cost

function with respect to control parameters (Deisenroth & Rasmussen, 2011; Levine & Koltun,

2013).

If an analytic model is given, e.g., via equations of motion or as a simulator1, one can use

classical optimal control techniques such as Differential Dynamic Programming (DDP) (Ja-

cobson & Mayne, 1970), which compute a reference trajectory as well as linear feedback

control law. For robustness, Iterative Linear Quadratic Gaussian Control (ILQG) (Todorov

& Li, 2005) or H-∞ Control (Stoorvogel, 1993) can be used to incorporate multiplicative

noise. Variants of ILQG have been used to generate guiding policies for data-driven RL

methods (Levine & Koltun, 2013; Zhang et al., 2016). Recently, there have been some

attempts to combine DDP or ILQG with data-driven models by replacing analytical models

with locally linear models (Mitrovic et al., 2010; Yamaguchi & Atkeson, 2015) or nonlinear

models (Pan & Theodorou, 2014; Pan et al., 2015; Yamaguchi & Atkeson, 2016; Pan &

Theodorou, 2015) learned by Gaussian Processes or Neural Networks.

The goal of our algorithm, GP-ILQG in particular, is closely aligned with those of Zagal

et al. (2004) and Abbeel et al. (2006). Zagal et al. (2004) has proposed a framework in which

the robot maintains two controllers, one for the simulator and another for the real world,

and aims to narrow the difference. Abbeel et al. (2006) assumes a deterministic real world,

constructs an optimal policy based on the simulator’s deterministic model, and evaluates

its performance in the real world, while successively augmenting the simulator’s model with

1We consider black-box simulators as analytical models, as derivatives can be taken by finite differencing.

8

time-dependent corrections based on real-world observations. GP-ILQG considers a stochastic

system and the correction is not time-dependent.

GP-ILQG’s online learning approach resonates with Ross & Bagnell (2012), which extends

DAgger to the MBRL setting and iterates between model learning and optimal control-based

exploration with an additional exploration policy. The key difference is that GP-ILQG

focuses on safe exploration by incorporating uncertainty into the model learning and policy

search, while Ross & Bagnell (2012) provides stronger guarantees of achieving near-optimal

performance. It would be an interesting direction to consider whether the guarantee can

extend if we incorporate model uncertainty into the algorithm.

2.3 Belief-Space Reinforcement Learning

Planning in belief space, where part of the state representation is a belief distribution,

is intractable (Papadimitriou & Tsitsiklis, 1987). This is a consequence of the curse of

dimensionality: the dimensionality of belief space over a finite set of variables equals the size

of that set, so the size of belief space grows exponentially. Many approximate solvers focus on

one or more of the following: 1) value function approximation, 2) compact, approximate belief

representation, or 3) direct mapping of belief to an action. QMDP (Littman et al., 1995a)

assumes full observability after one step to approximate Q-value. Point-based solvers, like

SARSOP (Kurniawati et al., 2008) and PBVI (Pineau et al., 2003b), exploit the piecewise-

linear-convex structure of POMDP value functions (under mild assumptions) to approximate

the value of a belief state. Sampling-based approaches, such as BAMCP (Guez et al., 2012)

and POMCP (Silver & Veness, 2010), combine Monte Carlo sampling and simple rollout

policies to approximate Q-values at the root node in a search tree. Except for QMDP, these

approaches target discrete POMDPs and cannot be easily extended to continuous spaces.

Sunberg & Kochenderfer (2018) extend POMCP to continuous spaces using double progressive

widening. Model-based trajectory optimization methods (Platt et al., 2010; van den Berg

et al., 2012) have also been successful for navigation on systems like unmanned aerial vehicles

and other mobile robots.

9

Neural network variants of POMDP algorithms are well suited for compressing high-

dimensional belief states into compact representations. For example, QMDP-Net (Karkus

et al., 2017) jointly trains a Bayes-filter network and a policy network to approximate Q-value.

Deep Variational Reinforcement Learning (Igl et al., 2018) learns to approximate the belief

using variational inference and a particle filter, and it uses the belief to generate actions.

Our methods, BPO and BRPO, are closely related to Exp-GPOMDP (Aberdeen & Baxter,

2002), a model-free policy gradient method for POMDPs. We leverage model knowledge and

revisit the underlying policy optimization method with recent advancements. Peng et al.

(2018) use Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) to encode a

history of observations to generate an action. The key difference between BPO and Peng

et al. (2018) is that BPO explicitly utilizes the belief distribution, while in Peng et al. (2018)

the LSTM must implicitly learn an embedding for the distribution. BRPO takes a step

further and leverages experts to scale to complex Bayesian tasks. We believe that explicitly

using a Bayes filter improves data efficiency and interpretability.

2.4 Robust (Adversarial) Reinforcement Learning

One can bypass the burden of maintaining belief and still find a robust policy by maximizing

the return for worst-case scenarios. Commonly referred to as Robust Reinforcement Learn-

ing (Morimoto & Doya, 2001), this approach uses a min-max objective and is conceptually

equivalent to H-infinity control (Başar & Bernhard, 2008) from classical robust control

theory. Recent works have adapted this objective to train agents against various external

disturbances and adversarial scenarios (Pinto et al., 2017; Bansal et al., 2018; Pattanaik

et al., 2018). Interestingly, instead of training against an adversary, an agent can also train

to be robust against model uncertainty with an ensemble of models. For example, Ensemble

Policy Optimization (EPOpt) (Rajeswaran et al., 2017) trains an agent on multiple MDPs

and strives to improve worst-case performance by concentrating rollouts on MDPs where the

current policy performs poorly. Ensemble-CIO (Mordatch et al., 2015) optimizes trajectories

across a finite set of MDPs.

10

While adversarial and ensemble model approaches have proven to be robust even to

unmodeled effects, they may result in overly conservative behavior when the worst-case

scenario is extreme. In addition, since these methods do not infer or utilize uncertainty, they

perform poorly when explicit information-gathering actions are required. Our approaches are

fundamentally different in that ours internally maintains a belief distribution. As a result,

our policies outperform robust policies in many scenarios.

2.5 Adaptive Policy Methods

Some approaches can adapt to changing model estimates without operating in belief space.

Adaptive-EPOpt (Rajeswaran et al., 2017) retrains an agent with an updated source distri-

bution after real-world interactions. Posterior Sampling Reinforcement Learning (Osband

et al., 2013) samples from a source distribution, executes an optimal policy for the sample

for a fixed horizon, and then re-samples from an updated source distribution. These ap-

proaches can work well for scenarios in which the latent MDP is fixed throughout multiple

episodes. Universal Policy with Online System Identification (UP-OSI) (Yu et al., 2017)

learns to predict the maximum likelihood estimate φMLE and trains a universal policy that

maps (s, φMLE) to an action. However, without a notion of belief, both PSRL and UP-OSI

can over-confidently execute policies that are optimal for the single estimate, causing poor

performance in expectation over different MDPs.

2.6 Residual Learning

Residual learning has its foundations in boosting (Freund & Schapire, 1999), which builds

a strong ensemble by sequentially training weak learners that address the failures of their

predecessors. Boosting with hand-designed policies or models allows priors to be injected

into RL. Prior work has leveraged known but approximate models by learning the residual

between the approximate dynamics and the discovered dynamics (Ostafew et al., 2014, 2015;

Berkenkamp & Schoellig, 2015). GP-ILQG takes a similar approach and learning the residual

between an approximate model and observed real-world dynamics, while iteratively improving

11

its policy. There has also been work on learning residual policies over hand-defined ones for

solving long horizon (Silver et al., 2018) and complex control tasks (Johannink et al., 2019).

Similarly, our approaches, BRQN and BRPO in particular, initialize with experts and learns

to improve via Bayesian reinforcement learning.

Recent work by Cheng et al. (2020) introduces an imitation learning algorithm to learn

from multiple suboptimal experts. While the objective is different from BRQN and BRPO

in that our work focuses on learning the Bayes-optimality gap, the proposed approach can be

used to construct a lightweight, high-performing ensemble of experts for BRPO.

2.7 Bayesian Meta-reinforcement Learning

Meta-reinforcement learning (MRL) approaches train sample-efficient learners by exploiting

structure common to a distribution of MDPs. For example, MAML (Finn et al., 2017) trains

gradient-based learners while RL2 (Duan et al., 2016b) trains memory-based learners. While

meta-supervised learning has well established Bayesian roots (Baxter, 1998, 2000), it was

only recently that meta-reinforcement learning was strongly tied to Bayesian Reinforcement

Learning (BRL) (Ortega et al., 2019; Rabinowitz, 2019). Our work is more closely related

to Bayesian MRL approaches. MAML-HB (Grant et al., 2018) casts MAML as hierarchical

Bayes and improves posterior estimates. BMAML (Yoon et al., 2018) uses non-parametric

variational inference to improve posterior estimates. PLATIPUS (Finn et al., 2018) learns a

parameter distribution instead of a fixed parameter. PEARL (Rakelly et al., 2019) learns a

data-driven Bayes filter across tasks. In contrast to these approaches, BRQN and BRPO

use experts at test time, learning only to optimally correct them.

2.8 Bayesian Reinforcement Learning and Posterior Sampling

Posterior Sampling Reinforcement Learning (PSRL) (Osband et al., 2013) is an online RL

algorithm that maintains a posterior over latent MDP parameters φ. However, the problem

setting it considers and how it uses this posterior are quite different than what we consider

here.

12

Our algorithms, BPO, BRQN, and BRPO in particular, focus on scenarios where

the agent can only interact with the test MDP for a single episode; latent parameters are

resampled for each episode. The PSRL regret analysis assumes MDPs with finite horizons

and repeated episodes with the same test MDP, i.e. the latent parameters are fixed for all

episodes.

Before each episode, PSRL samples an MDP from its posterior over MDPs, computes the

optimal policy for the sampled MDP, and executes it on the fixed test MDP. Its posterior is

updated after each episode, concentrating the distribution around the true latent parameters.

During this exploration period, it can perform arbitrarily poorly. Furthermore, sampling a

latent MDP from the posterior determinizes the parameters; as a result, there is no uncertainty

in the sampled MDP, and the resulting optimal policies that are executed will never take

sensing actions.

2.8.1 The Gap Between Bayes Optimality and Posterior Sampling

🐯 🐯 🐯

Depth d

L R

S👀

Figure 2.1: A tree-like MDP that highlights the distinction between BRL and PSRL.

Consider a deterministic tree-like MDP (Figure 2.1). Reward is received only at the

terminal leaf states: one leaf contains a pot of gold (R = 100) and all others contain a

dangerous tiger (R = −10). All non-leaf states have two actions, go left (L) and go right (R).

The start state additionally has a sense action (S), which is costly (R = −0.1) but reveals

the exact location of the pot of gold. Both algorithms are initialized with a uniform prior

over the N = 2d possible MDPs (one for each possible location of the pot of gold).

13

To contrast the performance of the Bayes-optimal policy and posterior sampling, we

consider the multi-episode setting where the agent repeatedly interacts with the same MDP.

The MDP is sampled once from the uniform prior, and agents interact with it for T episodes.

This is the setting typically considered by posterior sampling (PSRL) (Osband et al., 2013).

Before each episode, PSRL samples an MDP from its posterior over MDPs, computes

the optimal policy, and executes it. After each episode, it updates the posterior and repeats.

Sampling from the posterior determinizes the underlying latent parameter. As a result, PSRL

will never produce sensing actions to reduce uncertainty about that parameter because the

sampled MDP has no uncertainty. More concretely, the optimal policy for each tree MDP is

to navigate directly to the gold without sensing ; PSRL will never take the sense action. Thus,

PSRL makes an average of N−1
2

mistakes before sampling the correct pot of gold location

and the cumulative reward over T episodes is

−10
(
N−1

2

)
︸ ︷︷ ︸
mistakes

+100
(
T − N−1

2

)
︸ ︷︷ ︸

pot of gold

(2.1)

In the first episode, the Bayes-optimal first action is to sense. All subsequent actions in

this first episode navigate toward the pot of gold, for an episode reward of −0.1 + 100. In

the subsequent T − 1 episodes, the Bayes-optimal policy navigates directly toward the goal

without needing to sense, for a cumulative reward of 100T − 0.1. The performance gap

between the Bayes-optimal policy and posterior sampling grows exponentially with depth of

the tree d.

14

Chapter 3

GP-ITERATIVE LINEAR QUADRATIC CONTROL

In this chapter, we consider scenarios in which the agent can afford some real-world

failures. We make two simplifying assumptions from the general Bayesian RL setup. First,

we assume that the latent model does not change over episodes. Second, we assume that

the latent model is approximately centered around a nominal model. These assumptions are

particularly useful when the robot has unmodeled components such as wear and tear on its

joints, which do not change quickly.

With these assumptions, we propose a data-efficient policy search algorithm, GP-Iterative

Linear Quadratic Control (GP-ILQG), which iteratively improves initial policy by combining

an optimal control technique with data-driven model learning. GP-ILQG is capable of

correcting significant model errors and quickly converges to an optimal policy for the real-

world model. Importantly, it incorporates model uncertainty into its policy and takes

conservative actions when the uncertainty is high.

3.1 Introduction

As we aim to control more complex robotic systems autonomously, simulators are being

more frequently used for training in model-based reinforcement learning (Kober et al., 2013).

A simulator allows us to explore various policies without damaging the robot, and is also

capable of generating a large amount of synthetic data with little cost and time.

However, we often observe that simulator-based policies perform poorly in real world, due

to model discrepancy between the simulation and the real world. This discrepancy arises

from two fundamental challenges: (1) system identification to match the simulation model

with the real world requires the exploration of a large state space at the risk of damaging

15

[Simulation]
Robust-ILQG

[Real World]
Rollout

Model Learning

Policy π

Data

Augmented model

Figure 3.1: GP-ILQG overview

the robot, and (2) even with good system identification, there is still discrepancy due to the

limitations of a simulator’s ability to render real-world physics.

Stochastic optimal control algorithms attempt to partially address this issue by artificially

injecting noise into the simulation during training (Huh & Todorov, 2009; Wang et al., 2010),

or by explicitly modeling multiplicative noise (Todorov & Li, 2005; Stoorvogel, 1993).

If the task domain is predefined, exploration can be limited to task-specific trajectories,

and system identification can be coupled with trajectory optimization (Tan et al., 2016).

Some recent works have suggested policy training with multiple models, which results in a

policy robust to model variance (Mordatch et al., 2016; Boeing & Bräunl, 2012). While these

methods have shown some successful results, they are still limited by the expressiveness of

the simulator’s model. If the true model is outside of the simulator’s model space, little can

be guaranteed.

Thus, although these algorithms produce more robust policies, they fail to address the

fundamental issue: there is unknown but structured model discrepancy between the simulation

and the real world.

Our approach addresses both model bias and multiplicative noise. It is based on the

16

following key insight:

Improving upon known model prior and incorporating uncertainty in policy search

enable data-efficient learning and robust control.

Our algorithm iterates over simulation-based optimal control, real-world data collection,

and model learning, as illustrated in Figure 3.1. Starting from a potentially incorrect model

given by the simulator, we obtain a control policy, with which we collect data in the real

world. This data feeds into model learning, during which we correct model bias and estimate

our uncertainty of the correction. Both the correction and its uncertainty are incorporated

into computing a robust optimal control policy, which then gets used to collect more data.

Our approach improves any simulator beyond the scope of its model space to match

real-world observations and produces an optimal control policy robust to model uncertainty

and multiplicative noise. The improved simulator uses previous real-world observations to

infer the true model when it explores previously visited space, but when it encounters a new

region, it relies on the simulator’s original model. Due to this hybrid nature, our algorithm

shows faster convergence to the optimal policy than a pure data-driven approach (Pan &

Theodorou, 2014) or a pure simulation-based approach. Moreover, as it permanently improves

the simulator, it shows even faster convergence in new tasks in similar task domain.

3.2 Approach

We work with a deterministic nonlinear dynamical system. We assume that we have only

partial knowledge of the true system, which we represent as f. The unknown component is

represented as ε. The dynamic system can then be written as

s′ = f(s, a) + ε(s, a) (3.1)

where s is the state and a is the action.

Given a trajectory {s0, a0, · · · sT}, the total cost is given as J(s0) = E
[
lT (sT)+

∑T−1
i=0 l(si, ai)

]
,

where lT is the final cost and l is the running cost. The objective is to fine a policy that

17

Algorithm 1 GP-ILQG

Require: Nominal model f, GP prior ε, Data D
1: π ← ILQG(f + ε)
2: while π not converged do
3: Collect {(s, a, s′ − f(s, a)} from trajectories executed with π
4: D ← D ∪ {(s, a, s′ − f(s, a)}
5: ε← GP(D)
6: π ← ILQG(f + ε)

minimize the cost function. We can find such a policy using optimal control methods such as

ILQG if the dynamics is known.

We approximate the unknown component from data. From real-world trajectories, we

collect a set of (s, a, s′ − f(s, a)) tuples, where the last element corresponds to the unknown

component, ε. We use a Gaussian Process (GP) (Rasmussen, 2006) to estimate this. Be-

cause GP provides state-action dependent Gaussian distribution, this formulation makes

Equation 3.1 equivalent to a stochastic dynamical system used in ILQG, except that the

Gaussian component now captures uncertainty instead of stochasticity. We refer to Todorov

& Li (2005) for the full derivation of ILQG.

Our approach is summarized in Algorithm 1. Initially, we start by using ILQG to obtain a

locally optimal policy for f + ε, where the unknown component is a zero-mean GP prior. Then,

with real-world data from the executed policy, we train a GP to estimate ε. We run ILQG

again, but with the updated dynamics. This process is repeated until the policy converges.

One major advantage of our approach is that it is straightforward to use the improved

model for a new task. Given observations from previous tasks, Algorithm 1 can start with

a better estimate of ε. This results in a reduced learning time for subsequent tasks, as we

verify empirically in the following section.

3.2.1 Gaussian Process with the Simulator as a Mean Function

Gaussian Process Regression is a nonlinear regression technique that has been successfully

used in many model-based reinforcement learning approaches (Deisenroth & Rasmussen, 2011;

18

Pan & Theodorou, 2014). A Gaussian Process is a stochastic process in which any finite

subset is jointly Gaussian. Given a set of inputs and corresponding outputs {xi, yi}ni=1 the

distribution of {yi}ni=1 is defined by the covariance given by a kernel function k(xi, xj).

We use a variant of Gaussian Processes that uses a nonzero mean function. With

f : X → Y as the mean function, the prediction for test input x becomes the following:

E[y] = f(x) + k>xXK
−1(Y − f(X))

var(y) = kxx − k>xXK−1kxX

where kxX is the covariance between test input x and training set X, K is the covariance

matrix of among the elements of X. In this formulation, the GP provides a posterior

distribution given f(x) and observations.

Using the simulator as the mean function for a Gaussian Process allows us to combine the

simulator and real-world observations smoothly. Near previous observations, the simulator’s

prediction is corrected to match the target. When the test input is far from the previous

observations, the predictions resort to the simulator.

As we have both s and a as the input, we define s̃ = [s>a>]> to be the input and δs to

be the output, and use f as the mean function. Then, the GP serves to correct the error,

δs− f δt. We use the Automatic Relevance Determination squared exponential kernel:

k(s̃i, s̃j) = σ2
f exp(−(s̃i − s̃j)>Λ−1(s̃i − s̃j))

where σ2
f is the signal variance and Λ controls the characteristic length of each input dimension.

These hyperparameters are optimized to maximize log-likelihood of data using conventional

optimization methods. For multiple dimensions of Y , we train one GP per dimension and

treat each dimension to be independent.

3.3 Experimental Results

We consider two simulated tasks: cart-pole swing-up and quadrotor control. For each task,

one set of model parameters was used as the “simulator”, and another set of model parameters

19

0 10 20

0

0.5

1

Training Iterations

N
o
rm

a
li
ze
d
C
o
st

(a) Task 1 Cost

Incorrect Model Correct Model GP-ILQG PDDP

0 10 20

0

0.5

1

Training Iterations

(b) Task 2 Cost

0 50 100

−20

0

Timesteps (0.04s/step)

T
o
rq
u
e
(N

)

(c) Task 1 U-Trajectory

Figure 3.2: Cartpole swing-up.

was used as the “real-world.” Multiplicative noise was added to dynamics and Gaussian noise

was added to observation. We compare GP-ILQG’s performance with three optimal control

algorithms: (1) ILQG using the “real-world” model, (2) ILQG using the incorrect “simulator”

model, (3) Probabilistic DDP (PDDP) (Pan & Theodorou, 2014), which is a variant of ILQG

that relies only on data. For both GP-ILQG and PDDP, the same set of data and same GP

implementation were used at each iteration.

As data gets large, computing Gaussian Process becomes computationally expensive,

and thus it is common to use a subset of the data for computing the mean and covariance.

In our experiments, we keep all observations and uniformly sub-sample 300 data points at

each iteration1. GP hyperparameters are optimized with the Gaussian Process for Machine

Learning Toolbox (Rasmussen & Nickisch, 2010). If the learner’s prediction error for a

validation set is higher than that of its previous learner, we re-sample and re-train.

1For better results, more advanced techniques such as Sparse Pseudo-input GP (Snelson & Ghahramani,
2006) or Sparse Spectral Gaussian Process (Quiñonero-Candela et al., 2010) can be used.

20

0 5 10

0

0.5

1

Iterations

N
o
rm

a
li
ze
d
C
o
st

(a) Task 1 Cost

Incorrect Model Correct Model GP-ILQG

0 5 10

0

0.5

1

Iterations

(b) Task 2 Cost

0 100 200

3.5

4

4.5

5

Timesteps (0.02s/step)

H
ei
g
h
t
(m

)

(c) Task 1 Z-Trajectory

Figure 3.3: Quadrotor control

3.3.1 Cart-Pole Swing-Up

In the cart-pole problem, the state is defined as [x, ẋ, θ, θ̇], where x is the position of the cart

along the x−axis and θ is the angle of the pole from the vertical downright position. Control

input is the x-directional force (N). Our model for the mass of cart and pole is 1kg each. In

the simulator we use 1m pole, while the real world model uses 1.3m one.

We run two tasks in this experiment. In the first task, the initial state is [0, π/4, 0, 0].

Figure 3.2(a) is the normalized cost for the first task. While both GP-ILQG and PDDP

converges to the optimal performance, GP-ILQG is converges much quickly, within the first 2

iterations.

The difference between GP-ILQG and PDDP is more noticeable in the second task

(Figure 3.2(b)), which starts from a different initial state [0,−π/4, 0, 0]. Both GP-ILQG and

PDDP use the learner used in the previous task, but the initial cost for PDDP is significantly

higher than GP-ILQG. We believe that this is because both algorithms explore an unexplored

region in the first few iterations. While GP-ILQG relies on the simulator’s inaccurate model

in the unexplored region, PDDP has no information to make meaningful advancement until

enough data is collected.

21

What is more noticeable is the improved performance of GP-ILQG over the simulator-

based ILQG. The latter’s suboptimal policy results in significantly higher cost in general.

Figure 3.2(c) shows the control sequences generated by the final policies of the four algorithms.

GP-ILQG’s control sequence is almost identical to the optimal sequence, and PDDP closely

follows the optimal sequence as well. However, the simulator-based ILQG’s control sequence

is quite different due to its incorrect model.

3.3.2 Quadrotor

We use the quadrotor model introduced in van den Berg (2016). The model has 12-dimensional

state, x = [p, v, r, w]>, where p (m) and v (m/s) refers to the quadrotor’s position and velocity

in 3D space, r is orientation (rotation about axis r by angle ‖r‖), and w (rad/s) is angular

velocity. It has 4 control inputs, u = [u1, u2, u3, u4]>, which represent the force (N) exerted

by the four rotors. The dynamics is given as the following:

ṗ = v

v̇ = −ge3 + (
∑

ui) exp([r]e3 − kvv)/m

ṙ = w +
1

2
[r]w + (1− 1

2
‖r‖/ tan(

1

2
‖r‖)[r]2/‖r‖2

ẇ = J−1(ρ(u2 − u4)e1 + ρ(u3 − u1)e2 + km(u1 − u2 + u3 − u4)e3 − [w]Jw)

where ei are the standard basis vectors, g = 9.8m/s2 is gravity, kv is the drag coefficient

of rotors, m (kg) is the mass, J (kg m2) is the moment of inertia matrix, and ρ (m) is the

distance between the center of mass and the center of rotors, and km is a constant relating

the force of rotors to its torque. [·] refers to the skew-symmetric cross product. The model

parameters used are summarized in Table 3.1. The real-world model is 40% heavier than the

simulator’s model.

We evaluate the performance of two tasks. The quadrotor starts at a position near

(0m, 0m, 5m) with zero velocity. In the first task, the goal is to move the quadrotor forward

to (4m, 0m, 5m) in 4 seconds. The second task is to drive the quadrotor to (2m, 1m, 7m) in 4

22

Simulator Real World

kv 0.15 0.15

km 0.025 0.025

m 0.5 0.7

J 0.05 I 0.05 I

ρ 0.17 0.17

Table 3.1: kv is a constant relating the velocity to an opposite force, caused by rotor drag

and induced inflow. m (kg) is the mass, J (kg m2) is the moment of inertia matrix, ρ (m) is

the distance between the center of mass and the center of the rotors.

seconds. The cost function was set to track a straight line from the initial position to the

goal, with higher cost for maintaining the height.

In this experiment, we were not able to run PDDP to convergence with the same data

used in GP-ILQG. We believe that this arises from the same problem we saw in the second

task of cart-pole: PDDP has insufficient data to infer the unexplored state-space. We note

that the original PDDP algorithm requires random trajectories as its initial data set instead

of random variations of a single nominal trajectory. While our experiment does not indicate

that PDDP is incapable of this task2, it highlights our algorithm’s data efficiency. Even

with the small set of task-specific data, GP-ILQG converges in the first two iterations in the

initial task (Figure 3.3(a) and converges immediately to the optimal policy in the second task

(Figure 3.3(b)). Figure 3.3(c) compares the trajectories generated by the three algorithms. It

shows that while our algorithm closely tracks the desired height, the simulator’s suboptimal

controller fails to recover from the vertical drop due to its incorrect mass model.

2A similar experiment with quadrotor control was shown to be successful in Pan et al. (2015).

23

3.4 Discussion

GP-ILQG combines real-world data with a simulator’s model to improve real-world perfor-

mance of simulation-based optimal control. Our approach uses a Gaussian Process to correct

a simulator’s nonlinear model bias beyond the scope of its model space while incorporating the

uncertainty of our estimate in computing a robust optimal control policy. Through simulated

experiments, we have shown that our approach converges to the optimal performance within

a few iterations and is capable of generalizing the learned dynamics for new tasks.

Although our algorithm is capable of correcting significant model errors, it is limited by

the quality of the initial policy based on the simulator’s incorrect model. For example, the

simulator’s model can be sufficiently different from the true model such that the initial policy

results in catastrophic damage to the robot. Our algorithm is incapable of measuring this

initial uncertainty, although it can be improved by providing an initial set of expert-generated

trajectories.

24

Chapter 4

BAYESIAN POLICY OPTIMIZATION

In this chapter, we formulate the problem of model uncertainty as Bayes-Adaptive Markov

Decision Processes (BAMDPs). In a BAMDP, the agent maintains a posterior distribution

(belief) over latent model parameters, and maximizes its long-term reward given the belief.

Our algorithm, Bayesian Policy Optimization, builds on batch policy optimization algo-

rithms to learn a universal policy that navigates the exploration-exploitation trade-off to

maximize the Bayesian value function. Our method significantly outperforms algorithms

that address model uncertainty without explicitly reasoning about belief distributions and is

competitive with state-of-the-art Partially Observable Markov Decision Process solvers.

4.1 Introduction

The Bayes-Adaptive Markov Decision Process (BAMDP) framework (Ghavamzadeh et al.,

2015) elegantly captures the exploration-exploitation dilemma that the agent faces. Here, the

agent maintains a belief, which is a posterior distribution over the latent parameters φ given

a history of observations. A BAMDP can be cast as a Partially Observable Markov Decision

Process (POMDP) (Duff & Barto, 2002) whose state is (s, φ), where s corresponds to the

observable world state. By planning in the belief space of this POMDP, the agent balances

explorative and exploitative actions. In this chapter, we focus on BAMDP problems in which

the latent parameter space is either a discrete finite set or a bounded continuous set that can

be approximated via discretization. For this class of BAMDPs, the belief is a categorical

distribution, allowing us to represent it using a vector of weights.

The core problem for BAMDPs with continuous state-action spaces is how to explore the

reachable belief space. In particular, discretizing the latent space can result in an arbitrarily

25

large belief vector, which causes the belief space to grow exponentially. Approximating the

value function over the reachable belief space can be challenging: although point-based value

approximations (Kurniawati et al., 2008; Pineau et al., 2003b) have been largely successful

for approximating value functions of discrete POMDP problems, these approaches do not

easily extend to continuous state-action spaces. Monte-Carlo Tree Search approaches (Silver

& Veness, 2010; Guez et al., 2012) are also prohibitively expensive in continuous state-action

spaces: the width of the search tree after a single iteration is too large, preventing an adequate

search depth from being reached.

Our key insight is that we can bypass learning the value function and directly learn a

policy that maps beliefs to actions by leveraging the latest advancements in batch policy

optimization algorithms (Schulman et al., 2015, 2017). Inspired by previous approaches

that train learning algorithms with an ensemble of models (Rajeswaran et al., 2017; Yu

et al., 2017), we examine model uncertainty through a BAMDP lens. Although our approach

provides only locally optimal policies, we believe that it offers a practical and scalable solution

for continuous BAMDPs.

Our method, Bayesian Policy Optimization (BPO), is a batch policy optimization method

which utilizes a black-box Bayesian filter and augmented state-belief representation. During

offline training, BPO simulates the policy on multiple latent models sampled from the source

distribution (Figure 4.1a). At each simulation timestep, it computes the posterior belief using

a Bayes filter and inputs the state-belief pair (s, b) to the policy. Our algorithm only needs

to update the posterior along the simulated trajectory in each sampled model, rather than

branching at each possible action and observation as in MCTS-based approaches.

Our key contribution is the following. We introduce a Bayesian policy optimization

algorithm to learn policies that directly reason about model uncertainty while maximizing the

expected long-term reward (Section 4.3). To address the challenge of large belief representa-

tions, we introduce two encoder networks that balance the size of belief and state embeddings

in the policy network (Figure 4.1b). In addition, we show that our method, while designed

for BAMDPs, can be applied to continuous POMDPs when a compact belief representation is

26

Bayes Filter

...

Batch
Policy
Opt.

(a) Training procedure

b

s

Encoder

Encoder

Policy
Network

a

(b) Network structure

Figure 4.1: An overview of Bayesian Policy Optimization. The policy is simulated on multiple

latent models. At each timestep of the simulation, a black-box Bayes filter updates the

posterior belief and inputs the state-belief to the policy (Figure 4.1a). Belief (b) and state (s)

are independently encoded before being pushed into the policy network (Figure 7.2)

available (Section 4.3.2). Through experiments on classical POMDP problems and BAMDP

variants of OpenAI Gym benchmarks, we show that BPO significantly outperforms algorithms

that address model uncertainty without explicitly reasoning about beliefs and is competitive

with state-of-the-art POMDP algorithms (Section 4.4).

4.2 Preliminaries: Bayesian Reinforcement Learning

The Bayes-Adaptive Markov Decision Process framework (Duff & Barto, 2002; Ross et al.,

2008; Kolter & Ng, 2009) was originally proposed to address uncertainty in the transition

function of an MDP. The uncertainty is captured by a latent variable, φ ∈ Φ, which is either

directly the transition function, e.g. φsas′ = T (s, a, s′), or is a parameter of the transition,

e.g. physical properties of the system. The latent variable is either fixed or has a known

transition function. We extend the previous formulation of φ to address uncertainty in the

reward function as well.

Formally, a BAMDP is defined by a tuple 〈S,Φ, A, T,R, P0, γ〉, where S is the observable

27

state space of the underlying MDP, Φ is the latent space, and A is the action space. T and R

are the parameterized transition and reward functions, respectively. The transition function

is defined as: T (s, φ, a′, s′, φ′) = P (s′, φ′|s, φ, a′) = P (s′|s, φ, a′)P (φ′|s, φ, a′, s′). The initial

distribution over (s, φ) is given by P0 : S × Φ→ R+, and γ is the discount.

Bayesian Reinforcement Learning (BRL) considers the long-term expected reward with

respect to the uncertainty over φ rather than the true (unknown) value of φ. The uncertainty

is represented as a belief distribution b ∈ B over latent variables φ. BRL maximizes the

following Bayesian value function, which is the expected value given the uncertainty :

Vπ(s, b) = R(s, b, a′) + γ
∑

s′∈S,b′∈B
P (s′, b′|s, b, a′)Vπ(s′, b′)

= R(s, b, a′) + γ
∑

s′∈S,b′∈B
P (s′|s, b, a′)P (b′|s, b, a′, s′)Vπ(s′, b′)

(4.1)

where the action is a′ = π(s, b).1

The Bayesian reward and transition functions are defined in expectation with respect

to φ: R(s, b, a′) =
∑

φ∈Φ b(φ)R(s, φ, a′), P (s′|s, b, a′) =
∑

φ∈Φ b(φ)P (s′|s, φ, a′). The belief

distribution can be maintained recursively, with a black-box Bayes filter performing posterior

updates given observations. We describe how to implement such a Bayes filter in Section 4.3.1.

The use of (s, b) casts the partially observable BAMDP as a fully observable MDP in

belief space, which permits the use of any policy gradient method. We highlight that a

reactive Bayesian policy in belief space is equivalent to a policy with memory in observable

space (Kaelbling et al., 1998). In our work, the complexity of memory is delegated to a Bayes

filter that computes a sufficient statistic of the history.

In partially observable MDPs (POMDPs), the states can be observed only via a noisy

observation function. Mixed-observability MDPs (MOMDPs) (Ong et al., 2010) are similar

to BAMDPs: their states are (s, φ), where s is observable and φ is latent. Although any

BAMDP problem can be cast as a POMDP or a MOMDP problem (Duff & Barto, 2002),

1The state space S can be either discrete or continuous. The belief space B is always continuous, but we
use

∑
notation for simplicity.

28

Algorithm 2 Bayesian Policy Optimization

Require: Bayes filter ψ(·), initial belief b0(φ), P0, policy πr0 , horizon T , nitr, nsample

1: for i = 1, 2, · · · , nitr do

2: for n = 1, 2, · · · , nsample do

3: Sample latent MDP M : (s0, φ0) ∼ P0

4: τn ← Simulate(πri−1 , b0, ψ,M, T)

5: Update policy: ri ← BatchPolicyOptimization(ri−1, {τ1, · · · , τnsample
})

6: return πrbest

7: procedure Simulate(π, b0, ψ,M, T)

8: for t = 1, · · · , T do

9: at ← π(st−1, bt−1)

10: Execute at on M , observing rt, st

11: bt ← ψ(st−1, bt−1, at, st)

12: return (s0, b0, a1, r1, s1, b1, · · · , aH , rH , sH , bH)

the source of uncertainty in a BAMDP usually comes from the transition function, not the

unobservability of the state as it does with POMDPs and MOMDPs.

4.3 Bayesian Policy Optimization

We propose Bayesian Policy Optimization, a simple policy gradient algorithm for BAMDPs

(Algorithm 2). The agent learns a stochastic Bayesian policy that maps a state-belief pair to

a probability distribution over actions π : S × B → P (A). During each training iteration,

BPO collects trajectories by simulating the current policy on several MDPs sampled from

the prior distribution. During the simulation, the Bayes filter updates the posterior belief

distribution at each timestep and sends the updated state-belief pair to the Bayesian policy.

By simulating on MDPs with different latent variables, BPO observes the evolution of the

state-belief throughout multiple trajectories. Since the state-belief representation makes the

partially observable BAMDP a fully observable Belief-MDP, any batch policy optimization

29

algorithm (e.g., Schulman et al. (2015, 2017)) can be used to maximize the Bayesian Bellman

equation (Equation 4.1).

One key challenge is how to represent the belief distribution over the latent state space.

To this end, we impose one mild requirement, i.e., that the belief can be represented with

a fixed-size vector. For example, if the latent space is discrete, we can represent the belief

as a categorical distribution. For continuous latent state spaces, we can use Gaussian or a

mixture of Gaussian distributions. When such specific representations are not appropriate,

we can choose a more general uniform discretization of the latent space.

Discretizing the latent space introduces the curse of dimensionality. An algorithm must

be robust to the size of the belief representation. To address the high-dimensionality of belief

space, we introduce a new policy network structure that consists of two separate networks to

independently encode state and belief (Figure 7.2). These encoders consist of multiple layers

of nonlinear (e.g., ReLU) and linear operations, and they output a compact representation

of state and belief. We design the encoders to yield outputs of the same size, which we

concatenate to form the input to the policy network. The encoder networks and the policy

network are jointly trained by the batch policy optimization. Our belief encoder achieves the

desired robustness by learning to compactly represent arbitrarily large belief representations.

In Section 7.3, we empirically verify that the separate belief encoder makes our algorithm

more robust to large belief representations (Figure 4.2b).

As with most policy gradient algorithms, BPO provides only a locally optimal solu-

tion. Nonetheless, it produces robust policies that scale to problems with high-dimensional

observable states and beliefs (see Section 7.3).

4.3.1 Bayes Filter for Bayesian Policy Optimization

Given an initial belief b0, a Bayes filter recursively performs the posterior update:

b′(φ′|s, b, a′, s′) = η
∑

φ∈Φ

b(φ)T (s, φ, a′, s′, φ′) (4.2)

30

where η is the normalizing constant, and the transition function is defined as T (s, φ, a′, s′, φ′) =

P (s′, φ′|s, φ, a′) = P (s′|s, φ, a′)P (φ′|s, φ, a′, s′). At timestep t, the belief bt(φt) is the poste-

rior distribution over Φ given the history of states and actions, (s0, a1, s1, ..., st). When φ

corresponds to physical parameters for an autonomous system, we often assume that the

latent states are fixed.

Our algorithm utilizes a black-box Bayes filter to produce a posterior distribution over

the latent states. Any Bayes filter that outputs a fixed-size belief representation can be

used; for example, we use an extended Kalman filter to maintain a Gaussian distribution

over continuous latent variables in the LightDark environment in Section 7.3. When such a

specific representation is not appropriate, we can choose a more general discretization of the

latent space to obtain a computationally tractable belief update.

For our algorithm, we found that uniformly discretizing the range of each latent parameter

into K equal-sized bins is sufficient. From each of the resulting K |Φ| bins, we form an MDP

by selecting the mean bin value for each latent parameter. Then, we approximate the belief

distribution with a categorical distribution over the resulting MDPs.

We approximate the Bayes update in Equation 4.2 by computing the probability of

observing s′ under each discretized φ ∈ {φ1, · · · , φK|Φ|} as follows:

b′(φ|s, b, a′, s′) =
b(φ)p(s′|s, φ, a′)

∑K|Φ|

i=1 b(φi)p(s′|s, φi, a′)
where the denominator corresponds to η.

As we verify in Section 7.3, our algorithm is robust to approximate beliefs, which allows

the use of computationally efficient approximate Bayes filters without degrading performance.

A belief needs only to be accurate enough to inform the agent of its actions.

4.3.2 Generalization to POMDP

Although BPO is designed for BAMDP problems, it can naturally be applied to POMDPs.

In a general POMDP where state is unobservable, we need only b(s), so we can remove the

state encoder network.

31

Knowing the transition and observation functions, we can construct a Bayes filter that

computes the belief b over the hidden state:

b′(s′) = ψ(b, a′, o′) = η
∑

s∈S
b(s)T (s, a′, s′)Z(s, a′, o′)

where η is the normalization constant, and Z is the observation function, Z(s, a′, o′) =

P (o′|s, a′), of observing o′ after taking action a′ at state s. Then, BPO optimizes the

following Bellman equation:

Vπ(b) =
∑

s∈S
b(s)R(s, π(b)) + γ

∑

b′∈B
P (b′|b, π(b))Vπ(b′)

For general POMDPs with large state spaces, however, discretizing state space to form the

belief state is impractical. We believe that this generalization is best suited for beliefs with

conjugate distributions, e.g., Gaussians.

4.4 Experimental Results

We evaluate BPO on discrete and continuous POMDP benchmarks to highlight its use of

information-gathering actions. We also evaluate BPO on BAMDP problems constructed by

varying physical model parameters on OpenAI benchmark problems (Brockman et al., 2016).

For all BAMDP problems with continuous latent spaces (Chain, MuJoCo), latent parameters

are sampled in the continuous space in Step 3 of Algorithm 2, regardless of discretization.

We compare BPO to EPOpt and UP-MLE, robust and adaptive policy gradient

algorithms, respectively. We also include BPO-, a version of our algorithm without the

belief and state encoders; this version directly feeds the original state and belief to the policy

network. Comparing with BPO- allows us to better understand the effect of the encoders.

For UP-MLE, we use the maximum likelihood estimate (MLE) from the same Bayes filter

used for BPO, instead of learning an additional online system identification (OSI) network

as originally proposed by UP-OSI. This lets us directly compare performance when a full

belief distribution is used (BPO) rather than a point estimate (UP-MLE). For the OpenAI

32

Tiger Chain LightDark MuJoCo

Max. episode length 100 100 15 200

Batch size 500 10000 400 500

Training iterations 1000 500 10000 200

Discount (γ) 0.95 1.00 1.00 0.99

Stepsize (DKL) 0.01 0.01 0.01 0.01

GAE λ 0.96 0.96 0.96 0.96

Table 4.1: Training parameters

BAMDP problems, we also compare to a policy trained with TRPO in an environment with

the mean values of the latent parameters.

All policy gradient algorithms (BPO, BPO-, EPOpt, UP-MLE) use TRPO as the

underlying batch policy optimization subroutine. See Table 4.1 for parameter details. For

all algorithms, we compare the results from the seed with the highest mean reward across

multiple random seeds. Although EPOpt and UP-MLE are the most relevant algorithms

that use batch policy optimization to address model uncertainty, we emphasize that neither

formulates the problems as BAMDPs.

The encoder networks and policy network are jointly trained with Trust Region Policy

Optimization (Schulman et al., 2015). We used the implementation provided by Duan et al.

(2016a) with the parameters listed in Table ??.

As shown in Figure 7.2, the BPO network’s state and belief encoder components are

identical, consisting of two fully connected layers with Nh hidden units each and tanh

activations (Nh = 32 for Tiger, Chain, and LightDark; Nh = 64 for MuJoCo). The policy

network also consists of two fully connected layers with Nh hidden units each and tanh

activations. For discrete action spaces (Tiger, Chain), the output activation is a softmax,

resulting in a categorical distribution over the discrete actions. For continuous action spaces

(LightDark, MuJoCo), we represent the policy as a Gaussian distribution.

33

Tiger LightDark Chain CheetahSwimmerAnt

0

0.5

1

N
o
rm

.
R
ew

a
rd

BPO BPO- UP-MLE EPOPT

(a) Benchmark

101 102 103

250

300

350

A
v
g
.
R
ew

ar
d

BPO BPO-

(b) Discretization

Figure 4.2: (a) Comparison of BPO with belief-agnostic, robust RL algorithms. BPO

significantly outperforms benchmarks when belief-awareness and explicit information gathering

are necessary (Tiger, LightDark). It is competitive with UP-MLE when passive estimation

or universal robustness is sufficient (Chain, MuJoCo). (b) Scalability of BPO with respect to

latent state space discretization for the Chain problem.

Figure 4.2a illustrates the normalized performance for all algorithms and experiments.

We normalize by dividing the total reward by the reward of BPO. For LightDark, which

has negative reward, we first shift the total reward to be positive and then normalize.

Tiger (Discrete POMDP). In the Tiger problem, originally proposed by Kaelbling

et al. (1998), a tiger is hiding behind one of two doors. An agent must choose among three

actions: listen, or open one of the two doors; when the agent listens, it receives a noisy

observation of the tiger’s position. If the agent opens the door and reveals the tiger, it receives

a penalty of -100. Opening the door without the tiger results in a reward of 10. Listening

incurs a penalty of -1. In this problem, the optimal agent listens until its belief about which

door the tiger is behind is substantially higher for one door vs. the other. Chen et al. (2016)

frame Tiger as a BAMDP problem with two latent states, one for each position of the tiger.

Figure 4.2a demonstrates the benefit of operating in state-belief space when information

gathering is required to reduce model uncertainty. Since the EPOpt policy does not maintain

a belief distribution, it sees only the most recent observation. Without the full history of

34

observations, EPOpt learns only that opening doors is risky; because it expects the worst-case

scenario, it always chooses to listen. UP-MLE leverages all past observations to estimate the

tiger’s position. However, without the full belief distribution, the policy cannot account for

the confidence of the estimate. Once there is a higher probability of the tiger being on one

side, the UP-MLE policy prematurely chooses to open the safer door. BPO significantly

outperforms both of these algorithms, learning to listen until it is extremely confident about

the tiger’s location. In fact, BPO achieves close to the approximately optimal return found

by SARSOP (19.0± 0.6), a state-of-the-art offline POMDP solver that approximates the

optimal value function rather than performing policy optimization (Kurniawati et al., 2008).

Chain (Discrete BAMDP). To evaluate the usefulness of the independent encoder

networks, we consider a variant of the Chain problem (Strens, 2000). The original problem is

a discrete MDP with five states {si}5
i=1 and two actions {A,B}. Taking action A in state si

transitions to si+1 with no reward; taking action A in state s5 transitions to s5 with a reward

of 10. Action B transitions from any state to s1 with a reward of 2. However, these actions

are noisy: in the canonical version of Chain, the opposite action is taken with slip probability

0.2. In our variant, the slip probability is uniformly sampled from [0, 1.0] at the beginning

of each episode.2 In this problem, either action provides equal information about the latent

parameter. Since active information-gathering actions do not exist, BPO and UP-MLE

achieve similar performance.

Figure 4.2b shows that our algorithm is robust to the size of latent space discretization.

We discretize the parameter space with 3, 10, 100, 500, and 1000 uniformly spaced samples.

At coarser discretizations (3, 10), we see little difference between BPO and BPO-. However,

with a large discretization (500, 1000), the performance of BPO- degrades significantly, while

BPO maintains comparable performance. The performance of BPO also slightly degrades

when the discretization is too fine, suggesting that this level of discretization makes the

problem unnecessarily complex. Figure 4.2a shows the best discretization (10).

2A similar variant was introduced in Wang et al. (2012).

35

BPO BEETLE PERSEUS MCBRL

Chain-10 (tied) 364.5 ± 0.5 365.0 ± 0.4 366.1 ± 0.2

Chain-10 (semitied) 364.9 ± 0.8 364.8 ± 0.3 365.1 ± 0.3 321.6 ± 6.4

Table 4.2: For the Chain problem, a comparison of the 95% confidence intervals of average

return for BPO vs. other benchmark algorithms. Values for BEETLE, MCBRL, and Perseus

are taken from Wang et al. (2012), which does not report MCBRL performance in the “tied”

setting.

Goal

BPO

Goal

EPOpt

Goal

UP-MLE

Figure 4.3: Visualization of different algorithms on the LightDark environment. The dashed

line indicates the light source. Blue circles are one standard deviation for per-step estimates.

The BPO policy moves toward the light to obtain a better state estimate before moving

toward the goal.

In this discrete domain, we compare BPO to BEETLE (Poupart et al., 2006) and

MCBRL (Wang et al., 2012), state-of-the-art discrete Bayesian reinforcement learning algo-

rithms, as well as Perseus (Spaan & Vlassis, 2005), a discrete POMDP solver. In addition to

our variant, we consider a more challenging version where the slip probabilities for both actions

must be estimated independently. Poupart et al. (2006) refer to this as the “semi-tied” setting;

our variant is “tied.” BPO performs comparably to all of these benchmarks (Table 4.2).

Light-Dark (Continuous POMDP). We consider a variant of the LightDark problem

proposed by Platt et al. (2010), where an agent tries to reach a known goal location while being

36

uncertain about its own position. At each timestep, the agent receives a noisy observation

of its location. In our problem, the vertical dashed line is a light source; the farther the

agent is from the light, the noisier its observations. The agent must decide either to reduce

uncertainty by moving closer to the light, or to exploit by moving from its estimated position

to the goal.

After each action, an agent receives a noisy observation of its location, which is sampled

from a Gaussian distribution, o ∼ N ([x, y]>, w(x)), where [x, y] is the true location. The

noise variance is a function of x and is minimized when x = 5: w(x) = 1
2
(x − 5)2 + const.

There is no process noise.

The reward function is r(s, a) = −1
2
(‖s− g‖2 + ‖a‖2), where s is the true agent position

and g is the goal position. A large penalty of −5000‖sT − g‖2 is incurred if the agent does

not reach the goal by the end of the time horizon, analogous to the strict equality constraint

in the original optimization problem (Platt et al., 2010).

The initial belief is [x, y, σ2] = [2, 2, 2.25]. During training, we randomly sample latent

start positions from a rectangular region [2,−2]× [4, 4] and observable goal positions from

[0, -2]× [2, 4].

This example demonstrates how to apply BPO to general continuous POMDPs (Sec-

tion 4.3.2). The latent state is the continuous pose of the agent. For this example, we

parameterize the belief as a Gaussian distribution and perform the posterior update with an

Extended Kalman Filter, as in Platt et al. (2010).

Figure 4.3 compares sample trajectories from different algorithms on the LightDark

environment. Based on its initial belief, the BPO policy moves toward a light source to

acquire less noisy observations. As it becomes more confident in its position estimate, it

changes direction toward the light and then moves straight to the goal. Both EPOpt and

UP-MLE move straight to the goal without initially reducing uncertainty.

MuJoCo (Continuous BAMDP). Finally, we evaluate the algorithms on three

simulated benchmarks from OpenAI Gym (Brockman et al., 2016) using the MuJoCo physics

simulator (Todorov et al., 2012): HalfCheetah, Swimmer, and Ant. Each environment has

37

(a) BPO vs. TRPO

0 10 20 30

1

2

3

t

BPO
UP-MLE

(b) Entropy for Ant

80% 100% 120%
Leg 1 length

80%

100%

120%

Le
g

2
le

ng
th

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.8 0.1

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

(c) Belief at t = 20

Figure 4.4: (a) Comparison of BPO and TRPO trained on the nominal environment for a

different environment. The task is to move to the right along the x-axis. However, the model

at test time differs from the one TRPO trained with: one leg is 20% longer, another is 20%

shorter. (b) Comparison of average entropy per timestep by BPO and UP-MLE. The belief

distribution collapses more quickly under the BPO policy. (c) Belief distribution at t = 20

during a BPO rollout.

Cheetah Swimmer Ant

BPO

EPOpt UP-MLE TRPO EPOpt UP-MLE TRPO EPOpt UP-MLE TRPO

Figure 4.5: Pairwise performance comparison of algorithms on MuJoCo BAMDPs. Each

point represents an MDP, and its (x, y)-coordinates correspond to the long-term reward by

(baseline, BPO). The farther a point is above the line y = x, the more BPO outperforms

that baseline. Colors indicate which algorithm achieved higher reward: BPO (red), EPOpt

(green), UP-MLE (blue), or TRPO (purple).

38

several latent physical parameters that can be changed to form a BAMDP.

For ease of analysis, we vary two parameters for each environment. For HalfCheetah, the

front and back leg lengths are varied. For Ant, the two front leg lengths are varied. Swimmer

has four body links, so the first two link lengths vary together according to the first parameter,

and the last two links vary together according to the second parameter. We chose to vary

link lengths rather than friction or the damping constant because a policy trained on a single

nominal environment can perform well across large variations in those parameters. All link

lengths vary by up to 20% of the original length.

To construct a Bayes filter, the 2D-parameter space is discretized into a 5× 5 grid with a

uniform initial belief. We assume Gaussian noise on the observation, i.e. o = fφ(s, a) + w

with w ∼ N (0, σ2), with φ being the parameter corresponding to the center of each grid cell.

It typically requires only a few steps for the belief to concentrate in a single cell of the grid,

even when a large σ2 is assumed.

The MuJoCo benchmarks demonstrate the robustness of BPO to model uncertainty. For

each environment, BPO learns a universal policy that adapts to the changing belief over the

latent parameters.

Figure 4.4 highlights the performance of BPO on Ant. BPO can efficiently move to the

right even when the model substantially differs from the nominal model (Figure 4.4a). It

takes actions that reduce entropy more quickly than UP-MLE (Figure 4.4b). The belief over

the possible MDPs quickly collapses into a single bin (Figure 4.4c), which allows BPO to

adapt the policy to the identified model.

Figure 4.5 provides a more in-depth comparison of the long-term expected reward achieved

by each algorithm. In particular, for the HalfCheetah environment, BPO has a higher average

return than both EPOpt and UP-MLE for most MDPs. Although BPO fares slightly worse

than UP-MLE on Swimmer, we believe that this is largely due to random seeds, especially

since BPO- matches UP-MLE’s performance (Figure 4.2a).

Qualitatively, all three algorithms produced agents with reasonable gaits in most MDPs.

We postulate two reasons for this. First, the environments do not require active information-

39

gathering actions to achieve a high reward. Furthermore, for deterministic systems with little

noise, the belief collapses quickly (Figure 4.4b); as a result, the MLE is as meaningful as the

belief distribution. As demonstrated by Rajeswaran et al. (2017), a universally robust policy

for these problems is capable of performing the task. Therefore, even algorithms that do not

maintain a history of observations can perform well.

4.5 Discussion

Bayesian Policy Optimization is a practical and scalable approach for continuous BAMDP

problems. We demonstrate that BPO learns policies that achieve performance comparable to

state-of-the-art discrete POMDP solvers. They also outperform state-of-the-art robust policy

gradient algorithms that address model uncertainty without formulating it as a BAMDP

problem. Our network architecture scales well with respect to the degree of latent parameter

space discretization due to its independent encoding of state and belief. We highlight

that BPO is agnostic to the choice of batch policy optimization subroutine. Although

we used TRPO in this work, we can also use more recent policy optimization algorithms,

such as PPO (Schulman et al., 2017), and leverage improvements in variance-reduction

techniques (Weaver & Tao, 2001).

BPO outperforms algorithms that do not explicitly reason about belief distributions. Our

Bayesian approach is necessary for environments where uncertainty must actively be reduced,

as shown in Figure 4.2a and Figure 4.3. If all actions are informative (as with MuJoCo, Chain)

and the posterior belief distribution easily collapses into a unimodal distribution, UP-MLE

provides a lightweight alternative.

BPO scales to fine-grained discretizations of latent space. However, our experiments

also suggest that each problem has an optimal discretization level, beyond which further

discretization may degrade performance. As a result, it may be preferable to perform

variable-resolution discretization rather than an extremely fine, single-resolution discretization.

Adapting iterative densification ideas previously explored in motion planning (Gammell et al.,

2015) and optimal control (Munos & Moore, 1999) to the discretization of latent space may

40

yield a more compact belief representation while enabling further improved performance.

An alternative to the model-based Bayes filter and belief encoder components of BPO is

learning to directly map a history of observations to a lower-dimensional belief embedding,

analogous to Peng et al. (2018). This would enable a policy to learn a meaningful belief

embedding without losing information from our a priori choice of discretization. Combining

a recurrent policy for unidentified parameters with a Bayes filter for identified parameters

offers an intriguing future direction for research efforts.

41

Chapter 5

BAYESIAN CPACE

In this chapter, we present a Probably Approximately Correct (PAC) algorithm for Bayes-

Adaptive Markov Decision Processes (BAMDPs) in continuous state and action spaces. Our

key insight is to compute a near-optimal value function by covering the continuous state-belief-

action space with a finite set of representative samples and exploiting the Lipschitz continuity

of the value function. We prove the near-optimality of our algorithm and analyze several

schemes that boost the algorithm’s efficiency. Finally, we empirically validate our approach

on discrete and continuous BAMDPs and show that the learned policy has consistently

competitive performance against baseline approaches.

5.1 Introduction

Although BRL provides an elegant problem formulation for model uncertainty, PAC algorithms

for continuous state and action space BAMDPs have been less explored, limiting possible

applications in many robotics problems. In the discrete domain, there exist some efficient

online, PAC optimal approaches (Kolter & Ng, 2009; Chen et al., 2016) and approximate

Monte-Carlo algorithms (Guez et al., 2012), but it is not straightforward to extend this line

of work to the continuous domain. State-of-the-art approximation-based approaches for belief

space planning in continuous spaces (Sunberg & Kochenderfer, 2017; Guez et al., 2014) do

not provide PAC optimality.

In this chapter, we present a PAC optimal algorithm for BAMDPs in continuous state

and action spaces. The key challenge for PAC optimal exploration in continuous BAMDPs is

that the same state will not be visited twice, which often renders Monte-Carlo approaches

computationally prohibitive, as discussed in (Sunberg & Kochenderfer, 2017). However,

42

Figure 5.1: The BCPACE algorithm for BAMDPs. The vertices of the belief simplex

correspond to the latent MDPs constituting the BAMDP model, for which we can precompute

the optimal Q-values. During an iteration of BCPACE, it executes its greedy policy from

initial belief b0, which either never escapes the known belief MDP Belief MDPK or leads

to an unknown sample. Adding the unknown sample to the sample set may expand the

known set K and the known belief MDP Belief MDPK . The algorithm terminates when

the optimally reachable belief space is sufficiently covered.

if the value function satisfies certain smoothness properties, i.e. Lipschitz continuity, we

can efficiently “cover” the reachable belief space. In other words, we leverage the following

property:

A set of representative samples is sufficient to approximate a Lipschitz continuous

value function of the reachable continuous state-belief-action space.

Our algorithm, BCPACE (Figure 5.1) maintains an approximate value function based

on a set of visited samples, with bounded optimism in the approximation from Lipschitz

continuity. At each timestep, it greedily selects an action that maximizes the value function.

If the action lies in an underexplored region of state-belief-action space, the visited sample

is added to the set of samples and the value function is updated. Our algorithm adopts

C-PACE (Pazis & Parr, 2013), a PAC optimal algorithm for continuous MDPs, as our engine

for exploring belief space.

We make the following contributions:

43

1. We present a PAC optimal algorithm for continuous BAMDPs (Section 5.2).

2. We show how BAMDPs can leverage the value functions of latent MDPs to reduce the

sample complexity of policy search, without sacrificing PAC optimality (Definitions

5.2.3 and 5.2.4).

3. We prove that Lipschitz continuity of latent MDP reward and transition functions is a

sufficient condition for Lipschitz continuity of the BAMDP value function (Lemma 1).

4. Through experiments, we show that BCPACE has competitive performance against

state-of-art algorithms in discrete BAMDPs and promising performance in continuous

BAMDPs (Section 5.3).

5.2 BCPACE: Continuous PAC Optimal Exploration in Belief Space

In this section, we present BCPACE, an offline PAC-Bayes algorithm that computes a

near-optimal policy for a continuous state and action BAMDP. BCPACE is an extension of

C-PACE (Pazis & Parr, 2013), a PAC optimal algorithm for continuous state and action

MDPs. Efficient exploration of a continuous space is challenging because that the same

state-action pair cannot be visited more than once. C-PACE addresses this by assuming that

the state-action value function is Lipschitz continuous, allowing the value of a state-action pair

to be approximated with nearby samples. Similar to other PAC optimal algorithms (Strehl

et al., 2009), C-PACE applies the principle of optimism in the face of uncertainty : the value

of a state-action pair is approximated by averaging the value of nearby samples, inflated

proportionally to their distances. Intuitively, this distance-dependent bonus term encourages

exploration of regions that are far from previous samples until the optimistic estimate results

in a near-optimal policy.

Our key insight is that C-PACE can be extended from continuous states to those

augmented with finite-dimensional belief states. We derive sufficient conditions for Lipschitz

continuity of the belief value function. We show that BCPACE is indeed PAC-Bayes and

44

bound the sample complexity as a function of the covering number of the reachable belief

space from initial belief b0. In addition, we also present and analyze three practical strategies

for improving the sample complexity and runtime of BCPACE.

5.2.1 Definitions and Assumptions

We assume all rewards lie in [0, Rmax] which implies 0 ≤ Qmax, Vmax ≤ Rmax

1−γ . We will first

show that Assumption 5.2.1 and Assumption 5.2.2 are sufficient conditions for Lipschitz

continuity of the value function.1 Subsequent proofs do not depend on these assumptions as

long as the value function is Lipschitz continuous.

Assumption 5.2.1 (Lipschitz Continuous Reward and Transition Functions). Given any

two state-action pairs (s1, a1) and (s2, a2), there exists a distance metric d (·, ·) and Lipschitz

constants LR, LP such that the following is true:

|R(s1, φ, a1)−R(s2, φ, a2)| ≤ LRds1,a1,s2,a2

∑

s′

|P (s′|s1, φ, a1)− P (s′|s2, φ, a2)| ≤ LPds1,a1,s2,a2

where ds1,a1,s2,a2 = d ((s1, a1), (s2, a2))

Assumption 5.2.2 (Belief Contraction). Given any two belief vectors b1, b2 and any tuple of

(s, a, s′), the updated beliefs from the Bayes estimator b′1 = τ(b1, s, a, s
′) and b′2 = τ(b2, s, a, s

′)

satisfy the following:

||b′1 − b′2||1 ≤ ||b1 − b2||1

Assumption 5.2.1 and Assumption 5.2.2 can be used to prove the following lemma.

Lemma 1 (Lipschitz Continuous Value Function). Given any two state-belief-action tuples

(s1, b1, a1) and (s2, b2, a2), there exists a distance metric d (·, ·) and a Lipschitz constant LQ

such that the following is true:

|Q(s1, b1, a1)−Q(s2, b2,a2)| ≤ LQds1,b1,a1,s2,b2,a2

1For all proofs, refer to supplementary material.

45

where ds1,b1,a1,s2,b2,a2 = d ((s1, b1, a1), (s2, b2, a2))

The distance metric d ((s1, b1, a1), (s2, b2, a2)) for state-belief-action tuples is a linear

combination of the distance metric for state-action pairs used in Assumption 5.2.1 and the

L1 norm for belief

αd ((s1, a1), (s2, a2)) + ||b1 − b2||1

for an appropriate choice of α, which is a function of Rmax, LR, and LP .

BCPACE builds an optimistic estimator Q̃(s, b, a) for the value function Q(s, b, a) using

nearest neighbor function approximation from a collected sample set. Since the value function

is Lipschitz continuous, the value for any query can be estimated by extrapolating the value

of neighboring samples with a distance-dependent bonus. If the number of close neighbors

is sufficiently large, the query is said to be “known” and the estimate can be bounded.

Otherwise, the query is unknown and is added to the sample set. Once enough samples

are added, the entire reachable space will be known and the estimate will be bounded with

respect to the true optimal value function Q∗(s, b, a). We define these terms more formally

below.

Definition 5.2.1 (Known Query). Let LQ̃ = 2LQ be the Lipschitz constant of the optimistic

estimator. A state-belief-action query (s, b, a) is said to be ”known” if its kth nearest neighbor

in the sample set (sk, bk, ak) is within ε/LQ̃.

We are now ready to define the estimator.

Definition 5.2.2 (Optimistic Value Estimate). Assume we have a set of samples C where

every element is a tuple (si, bi, ai, ri, s
′
i, b
′
i): starting from (si, bi), the agent took an action ai,

received a reward ri, and transitioned to (s′i, b
′
i). Given a state-belief-action query (s, b, a), its

jth nearest neighbor from the sample set provides an optimistic estimate

xj = LQ̃d ((s, b, a), (sj, bj, aj)) + Q̃(sj, bj, aj). (5.1)

46

The value is the average of all the nearest neighbor estimates

Q̃(s, b, a) =
1

k

k∑

j=1

min
(
xj, Q̃max

)
(5.2)

where Q̃max = Rmax + γQmax is the upper bound of the estimate. If there are fewer than k

neighbors, Q̃max can be used in place of the corresponding xj.

Note that the estimator is a recursive function. Given a sample set C, value iteration is

performed to compute the estimate for each of the sample points,

Q̃(si, bi, ai) = ri + γmax
a
Q̃(s′i, b

′
i, a) (5.3)

where Q̃(s′i, b
′
i, a) is approximated via equation 5.2 using its nearby samples. This estimate

must be updated every time a new sample is added to the set.

We introduce two additional techniques that leverage the Q-values of the underlying latent

MDPs to improve the sample complexity of BCPACE.

Definition 5.2.3 (Best-Case Upper Bound). We can replace the constant Q̃max in Defini-

tion 5.2.2 with Q̃max(s, b, a) computed as follows:

Q̃max(s, b, a) = max
φ,b(φ)>0

Q(s, φ, a)

In general, any admissible heuristic U that satisfies Q(s, b, a) ≤ U(s, b, a) ≤ Q̃max can

be used. In practice, the Best-Case Upper Bound reduces exploration of actions which are

suboptimal in all latent MDPs with nonzero probability.

We can also take advantage of Q(s, φ, a) whenever the belief distribution collapses. These

exact values for the latent MDPs can be used to seed the initial estimates.

Definition 5.2.4 (Known Latent Initialization). Let eφ be the belief distribution where

P (φ) = 1, i.e. a one-hot encoding. If there exists φ such that ||b− eφ||1 ≤ ε
LQ(1+γ)

, then we

can use the following estimate:

Q̃(s, b, a) = Q(s, φ, a) (5.4)

47

This extends Definition 5.2.1 for a known query to include any state-belief-action tuple where

the belief is within ε
LQ(1+γ)

of a one-hot vector.

We refer to Proposition 5.2.1 for how this reduces sample complexity.

5.2.2 Algorithm

We describe our algorithm, BCPACE, in Algorithm 3. To summarize, at every timestep t the

algorithm computes a greedy action at using its current value estimate Q̃(st, bt, at), receives a

reward rt, and transitions to a new state-belief (st+1, bt+1) (Lines 6–8). If the sample is not

known, it is added to the sample set C (Line 10). The value estimates for all samples are

updated until the fixed point is reached (Line 11). Terminal condition G is met when no

more samples are added and value iteration has converged for sufficient number of iterations.

The algorithm invokes a subroutine for computing the estimated value function (Lines 13–23)

which correspond to the operations described in Definition 5.2.2, 5.2.3, and 5.2.4.

5.2.3 Analysis of Sample Complexity

We now prove that BCPACE is PAC-Bayes. Since we adopt the proof of C-PACE, we

only state the main steps and defer the full proof to supplementary material. We begin with

the concept of a known belief MDP.

Definition 5.2.5 (Known Belief MDP). Let Belief MDP be the original belief MDP.

Let K be the set of all known state-belief-action tuples. We define a known belief MDP

Belief MDPK that is identical to Belief MDP on K (i.e. identical transition and reward

functions) and for all other state-belief-action tuples, it transitions deterministically with a

reward R(s, b, a) = Q̃(s, b, a) to an absorbing state with zero reward.

We can then bound the performance of a policy on Belief MDP with its performance

on Belief MDPK and the maximum penalty incurred by escaping it.

48

Algorithm 3 BCPACE

Require: Bayes-Estimator τ , initial belief b0, BAMDP, terminal condition G, horizon T

Ensure: Action value estimate Q̃

1: Initialize sample set C ← ∅
2: while G is false do

3: Initialize BAMDP by resampling initial state and latent variable to s0, φ0 ∼ P0(s, φ)

4: Reset belief to b0

5: for t = 0, 1, 2, · · · , T − 1 do

6: at ← arg maxa Q̃(st, bt, a)

7: Execute at on BAMDP to receive rt, st+1

8: bt+1 ← τ(bt, st, at, st+1)

9: if (st, bt, at) is not known then

10: Add (st, at, bt, rt, st+1, bt+1) to C

11: Find fixed point of Q̃(si, bi, ai) for C

12: Return Q̃

13: function Q̃(s, b, a)

14: Find closest one-hot vector φ = minφ d (b, eφ)

15: if ||b− eφ||1 ≤ ε
LQ(1+γ) then

16: Q̃(s, b, a)← Q(s, φ, a)

17: else

18: Find k nearest neighbors {sj , bj , aj , rj , s′j , b′j} in sample set C

19: for j = 1, · · · , k do

20: dj ← d ((s, b, a), (sj , bj , aj))

21: xj ← LQ̃dj + Q̃(sj , bj , aj)

22: Q̃(s, b, a) = 1
k

∑k
j=1 min

(
xj , Q̃max(s, b, a)

)

23: Return Q̃(s, b, a)

Lemma 2 (Generalized Induced Inequality, Lemma 8 in Strehl & Littman (2008)). We are

given the original belief MDP Belief MDP, the known belief MDP Belief MDPK , a policy

π and time horizon T . Let P (EK) be the probability of an escape event, i.e. the probability of

49

sampling a state-belief-action tuple that is not in K when executing π on Belief MDP from

(s, b) for T steps. Let V π
Belief MDP be the value of executing policy on Belief MDP. Then

the following is true:

V π
Belief MDP(s, b, T) ≥ V π

Belief MDPK
(s, b, T)−QmaxP (EK)

We now show one of two things can happen: either the greedy policy escapes from the

known MDP, or it remains in it and performs near optimally. We first show that it can only

escape a certain number of times before the entire reachable space is known.

Lemma 3 (Full Coverage of Known Space, Lemma 4.5 in Kakade et al. (2003)). All reachable

state-belief-action queries will become known after adding at most kNBelief MDP(ε/LQ̃) samples

to C.

Corollary 5.2.1 (Bounded Escape Probability). At a given timestep, let P (EK) > ε
Qmax(1−γ)

.

Then with probability 1−δ, this can happen at most for 2Qmax

ε

(
kNBelief MDP(ε/LQ̃) + log

(
1
δ

))
log Rmax

ε

timesteps.

We now show that when inside the known MDP, the greedy policy will be near optimal.

Lemma 4 (Near-optimality of Approximate Greedy (Theorem 3.12 of Pazis & Parr (2013))).

Let Q̃ be an estimate of the value function that has bounded Bellman error −ε− ≤ Q̃−BQ̃ ≤ ε+,

where B is the Bellman operator. Let π̃ be the greedy policy on Q̃. Then the policy is near-

optimal:

V π̃(s, b) ≥ V ∗(s, b)− ε− + ε+
1− γ

Let ε be the approximation error caused by using a finite number of neighbors in equa-

tion 5.2 instead of the Bellman operator. Then Lemma 4 leads to the following corollary.

Corollary 5.2.2 (Near-optimality on Known Belief MDP). If Q̃2
max

ε2
log
(

2NBelief MDP(ε/LQ̃)

δ

)
≤

k ≤ 2NBelief MDP(ε/LQ̃)

δ
, i.e. the number of neighbors is large enough, then using Hoeffding’s

inequality we can show −ε ≤ Q̃−BQ̃ ≤ 2ε. Then on the known belief MDP Belief MDPK ,

the following can be shown with probability 1− δ:

V π̃
Belief MDPK

(s, b) ≥ V ∗Belief MDPK
(s, b)− 3ε

1− γ

50

We now put together these ideas to state the main theorem.

Theorem 5 (BCPACE is PAC-Bayes). Let Belief MDP be a belief MDP. At timestep

t, let π̃t be the greedy policy on Q̃, and let (st, bt) be the state-belief pair. With probability at

least 1− δ, V π̃t(st, bt) ≥ V ∗(st, bt)− 7ε
1−γ , i.e. the algorithm is 7ε

1−γ -close to the optimal policy

for all but

m =
2Qmax

ε

(
kNBelief MDP(ε/LQ̃) + log

2

δ

)
log

(
Rmax

ε

)

steps when k ∈
[
Q̃2

max

ε2
log

4NBelief MDP(ε/LQ̃)

δ
,

4NBelief MDP(ε/LQ̃)

δ

]
is used for the number of neighbors

in equation 5.2.

Proof: At time t, we can form a known belief MDP Belief MDPK from the samples

collected so far. Either the policy leads to an escape event within the next T steps or the

agent stays within Belief MDPK . Such an escape can happen at most m times with high

probability; when the escape probability is low, V π̃ is 7ε
1−γ -optimal.

5.2.4 Analysis of Performance Enhancements

We can initialize estimates with exact Q values for the latent MDPs.This makes the known

space larger, thus reducing covering number.

Proposition 5.2.1 (Known Latent Initialization). Let N ′Belief MDP(ε/LQ̃) be the covering

number of the reduced space
{

(s, b, a)
∣∣∣ ∀ei, d (b, ei) ≥ ε

LQ(1+γ)

}
. Then the sample complexity

reduces by a factor of
N ′Belief MDP(ε/LQ̃)

NBelief MDP(ε/LQ̃)
.

It is also unnecessary to perform value iteration until convergence.

Proposition 5.2.2 (Approximate Value Iteration). Let 0 < β < Q̃max. Suppose the value

iteration step (Line 11) is run only for i = dlog(β/Q̃max)/log γe iterations denoted by B̃iQ̃ (in-

stead of until convergence B̃∞Q̃). We can bound the difference between two functions as∣∣∣
∣∣∣B̃iQ̃− B̃∞Q̃

∣∣∣
∣∣∣
∞
≤ β. This results in an added suboptimality term in Theorem 5:

V π̃t(st, bt) ≥ V ∗(st, bt)−
7ε+ 2β

1− γ (5.5)

51

0 0.25 0.5 0.75 1
−4

−2

0

2

4

6

8

10

b

Q̃
(s
,b
,a
)

Listen Open Right Open Left

(a) Value approximation for Tiger

−100

10

Start

Light switch

(b) An optimal path taken by BCPACE

Figure 5.2: With greedy exploration, only best actions are tightly approximated (Figure 5.2a).

BCPACE takes optimal actions for a continuous BAMDP (Figure 5.2b).

One practical enhancement is to collect new samples in a batch with a fixed policy before

performing value iteration. This requires two changes to the algorithm: 1) an additional loop

to repeat (Lines 5–11) n times, and 2) perform (Line 11) outside of the loop. This increases

the sample complexity by a constant factor but has empirically reduced runtime by only

performing value iteration when a large change is expected.

Proposition 5.2.3 (Batch Sample Update). Suppose we collect new samples from n rollouts

with the greedy policy at time t before performing value iteration. This increases the sample

complexity only by a constant factor of O(n).

5.3 Experimental Results

We compare BCPACE with QMDP, POMDP-lite, and SARSOP for discrete BAMDPs

and with QMDP for continuous BAMDPs. For discrete state spaces, we evaluate BCPACE

on two widely used synthetic examples, Tiger (Kaelbling et al., 1998) and Chain (Strens,

2000). For both BCPACE and POMDP-lite, the parameters were tuned offline for

52

QMDP P-Lite SARSOP BCPACE

Tiger 16.5± .8 11.8± .6 17.8± 1.9 18.0± 1.4

Chain 12.9± .5 13.0± .1 13.4± .1 14.3± .1
LightDark 0 15.1± .3 29.0 29.0

LightDark (cont.) 0 - - 25.4± .1

Table 5.1: Benchmark results. LightDark (cont.) has continuous state space. BCPACE is

competitive for both discrete and continuous BAMDPs).

best performance. For continuous state spaces, we evaluate on a variant of the Light-Dark

problem (Platt et al., 2010).

While our analysis is applicable for BAMDPs with continuous state and action spaces,

any approximation the greedy selection of an action is not guaranteed to be PAC-Bayes.

Thus, we limit our continuous BAMDP experiments to discrete action spaces and leave the

continuous action case for future work.

Tiger: Please see Section 4.4 for the description of the problem.

Table 5.1 shows that BCPACE performs as competitively as SARSOP and is better

than QMDP or POMDP-lite. This is not surprising since both BCPACE and SARSOP

are offline solvers.

Figure 5.2a visualizes the estimated values. Because BCPACE explores greedily, ex-

ploration is focused on actions with high estimated value, either due to optimism from

under-exploration or actual high value. As a result, suboptimal actions are not taken once

BCPACE is confident that they have lower value than other actions. Because fewer samples

have been observed for these suboptimal actions, their approximated values are not tight.

Note also that the original problem explores a much smaller subset of the belief space, so we

have randomly initialized the initial belief from [0, 1] rather than always initializing to 0.5 for

this visualization, forcing BCPACE to perform additional exploration.

Chain: Please see Section 4.4 for the description of the canonical version of the problem.

53

In our variant, we allow the slip probability to be selected from [0.2, 0.5, 0.8] with uniform

probability at the beginning of each episode. These three latent MDPs form a BAMDP.

Table 5.1 shows that BCPACE outperforms other algorithms.

Light-Dark Tiger: We consider a variant of the Light-Dark problem, which we call

Light-Dark Tiger (Figure 5.2b). In this problem, one of the two goal corners (top-right or

bottom-right) contains a tiger. The agent receives a penalty of -100 if it enters the goal

corner containing the tiger and a reward of 10 if it enters the other region. There are four

actions—Up, Down, Left, Right—which move one unit with Gaussian noise of N (0, σ2). The

tiger location is unknown to the agent until the left wall is reached. As in the original Tiger

problem, this POMDP can be formulated as a BAMDP with two latent MDPs.

We consider two cases, one with zero noise and another with σ = 0.01. With zero noise,

the problem is a discrete POMDP and the optimal solution is deterministic; the agent hits

the left wall and goes straight to the goal location. When there is noise, the agent may not

reach the left wall in the first step. Paths executed by BCPACE still take Left until the left

wall is hit and goes to the goal (Figure 5.2b).

5.4 Discussion

We have presented the first PAC-Bayes algorithm for continuous BAMDPs whose value

functions are Lipschitz continuous. While the practical implementation of BCPACE is

limited to discrete actions, our analysis holds for both continuous and discrete state and

actions. We believe that our analysis provides an important insight for the development of

PAC efficient algorithms for continuous BAMDPs.

The BAMDP formulation is useful for real-world robotics problems where uncertainty over

latent models is expected at test time. An efficient policy search algorithm must incorporate

prior knowledge over the latent MDPs to take advantage of this formulation. As a step

toward this direction, we have introduced several techniques that utilize the value functions

of underlying latent MDPs without affecting PAC optimality.

One of the key assumptions BCPACE has made is that the cardinality of the latent

54

state space is finite. This may not be true in many robotics applications in which latent

variables are drawn from continuous distributions. In such cases, the true BAMDP can be

approximated by sampling a set of latent variables, as introduced in Wang et al. (2012). In

future work, we will investigate methods to select representative MDPs and to bound the

gap between the optimal value function of the true BAMDP and the approximated one.

Although it is beyond the scope of BCPACE, we would like to make two remarks. First,

BCPACE can easily be extended to allow parallel exploration, similar to how Pazis & Parr

(2016) extended the original C-PACE to concurrently explore multiple MDPs. Second, since

we have generative models for the latent MDPs, we may enforce exploration from arbitrary

belief points. Of course, the key to efficient exploration of belief space lies in exploring just

beyond the optimally reachable belief space, so “random” initialization is unlikely to be

helpful. However, if we can approximate this space similarly to sampling-based kinodynamic

planning algorithms (Li et al., 2016), this may lead to more structured search in belief space.

55

Chapter 6

BAYESIAN RESIDUAL Q-LEARNING

In this chapter, we propose a Q-learning framework that jointly trains an ensemble of

experts that propose action-value estimates and a residual network that learns the gap between

the ensemble’s proposal and the Bayes-optimal action-value. Our algorithm encompasses

several alternate architectures and techniques for Bayesian Q-learning, which we compare

empirically.

Our key insight is that finding an expert policy for each latent MDP, in the absence of

model uncertainty, is much easier than finding a Bayes-optimal policy for the whole problem.

This insight is materialized again in Chapter 7, with a batch policy optimization algorithm.

In this chapter, we apply it to a Q-learning framework on discrete action spaces and focus on

closing the gap between the experts and the optimal policy in action-values.

6.1 Introduction

As discussed in previous chapters, achieving the Bayes-optimal objective due to the curse of

dimensionality. Looking at the challenge closer, we notice that there is more specific challenge

to BAMDPs whose latent models require significantly different policies. In these problems,

the agent must not only learn to solve each latent MDP, but also learn to be Bayesian over

them. As the latent models get more diverse and complex, the simulatenous learning of the

two becomes more computationally expensive. Deep reinforcement learning algorithms that

utilize neural networks often fail to learning the multimodal policy, and end up converging to

undesirable local optima.

We leverage the fact that training an expert policy for each MDP is much easier than

training a single Bayes-optimal agent across multiple. For any given MDP, such an expert

56

policy could come from optimal control, demonstration, or another RL algorithm. Once these

experts are provided, we can use their expected value under the belief as a baseline, which is

a well-known upper-bound to the Bayes-optimal value function (Littman et al., 1995a). Since

the expected value is optimal when the belief collapses to single MDP, the agent can focus

learning in regions where the entropy is high. Formally, we decompose the Bayes-optimal

value function as the following:

Q∗(s, b, a) = (1− w(b))
∑

k

b(k)Q(k)(s, a) + w(b)Qr(s, b, a) (6.1)

where w(b) is the entropy, b(k) is the belief of the kth MDP, and Q(k) is the value function of

the corresponding expert and Qr is the residual. We assume there is a known finite number

of MDPs or that they have been clustered into a finite number of clusters.

Our algorithm is a Bayesian Q-learning method which simultaneously learns the residual

and improves the expert values. Our key insight is that we can maintain distinct experts by

only exposing each to the MDP that it is responsible for; because each expert is responsible

only for a single MDP, the experts remain belief-agnostic. Meanwhile, the residual Q-network

(Qr) is belief-aware and is trained across all episodes.

We make the following contributions:

• An architecture for a Bayesian RL agent with distinct experts and a residual Q-network

• A family of algorithms that jointly train expert and residual Q-networks, warm-start

learned experts, or use fixed experts

• Empirical evaluation that demonstrates the network is able to learn Bayes-optimal

behaviors in a data-efficient manner

6.2 Bayesian Residual Q-Learning

We propose a Q-learning algorithm which combines a set of expert value functions in a

Bayes-optimal manner by simultaneously learning a residual value function and expert value

functions. We start from the idea that each expert can be responsible for one of the latent

57

Figure 6.1: Network overview. State s is an input to every module, and s′, a′ are the state

and action from the previous step. Red is one example of trained modules per sample batch.

Samples from Mk are only used to train expert k, while the Residual Q-network is trained

with samples from all MDPs.

MDPs, and combine the expert value functions with a residual value function (Equation 6.1).

Assuming that the experts are indeed good experts for each MDP, we use entropy as w,

i.e. w(b) = −α∑k b(k) log(b(k)) with α as a tuning parameter so that the residual function

disappears when the entropy is low.

Now we need to make sure that the experts are actually trained to achieve high performance

on their assigned MDP. The key insight is to expose expert k only to the episodes where Mk

was the latent MDP, and train it in a belief-agnostic manner.

The algorithm is provided in Algorithm 4, which is a modified version of Deep Q Network

(DQN) (Van Hasselt et al., 2016). Figure 7.1 shows the network structure. During training,

we keep track of the latent MDPs and maintain target values for the final value function and

expert value functions separately. Given a replay sample (k, sj, bj, aj, rj, sj+1, bj+1) generated

from Mk, we have

y
(k)
j = rj + γmax

a′
Q

(k)
θ (sj, a

′) (6.2)

corresponding to the target for the expert Qk
θ and

yj = rj + γmax
a′

Qθ(sj, bj, a
′) (6.3)

58

Algorithm 4 Bayesian Residual Q-Learning

Require: MDP distribution P0, Bayes filter ψ(·), initial belief b0, θ0, horizon T , N , Replay

memory D

1: for episode= 1, · · · , N do

2: Sample an MDP Mi ∼ P0

3: Initialize belief b0

4: for t = 1, · · · , T do

5: With probability ε select a random action at, or

6: at = arg maxaQθ(st, bt, a)

7: Execute at and observe rt, st+1

8: Update bt+1 = ψ(bt, at, st+1)

9: Store (i, st, bt, at, rt, st+1, bt+1) in D

10: Sample Mk ∼ P0

11: Sample a random minibatch from D with k, i.e. (k, sj, bj, aj, rj, sj+1, bj+1)

12: Set y
(k)
j = rj + γmaxa′ Q

k
θ(sj, a

′)

13: Set yj = rj + γmaxa′ Qθ(sj, bj, a
′)

14: Perform a gradient descent step on (y
(k)
j −Qk

θ(sj, aj))
2, update only θk for Qk

θ

15: Perform a gradient descent step on (yj −Qθ(sj, bj, aj))
2, update only θr for Qr

θ

corresponding to the target for the weight-balanced sum of Qr and Q(1),...,(k) in Equation 6.1.

In certain cases, we may have access to near-optimal experts even during test time.

In this case we propose to use a simpler version of our algorithm, which we refer to as

RBQN-FixedExperts (BRQN-FE). In RBQN-FE, we perform the gradient descent steps

from Equation 6.3 and update only θr. Through experiments we verify that this indeed

results in a data-efficient, fast convergence to the optimal value. We refer to our original

algorithm which jointly trains the experts as RBQN-LearnedExperts (BRQN-LE). If the

59

experts are accessible only during training, we can consider an intermediate approach where

we warm-start the expert networks in BRQN-LE with expert value functions and jointly

train them.

6.3 Experimental Results

6.3.1 Toy Example: Tiger

We first use a toy problem to verify our hypothesis that our algorithm produces experts that

specialize in each MDP. We refer to Section 4.4 for the description of the problem. In this

problem, a Bayes-optimal agent would listen until its belief about which door the tiger is

behind is substantially higher for one door than the other.

Figure 6.2a shows two versions of our algorithm, RBQN-FixedExperts, RBQN-LearnedExperts,

compared with a vanilla DQN trained on the belief MDP which provides belief of Tiger

location as an input. We can see that the RBQN-FE has a much faster convergence as the

value is near-optimal for one-hot beliefs.

Figure 6.2b shows that BRQN-LE is able to train each expert on one MDP, without

mixing other MDPs. It shows the value function of one of the experts trained by BRQN-LE.

The expert trained with the tiger behind the left door learns precisely that it can open the right

door for all beliefs. Nonetheless, the final value function produced by RBQN-LearnedExperts

is Bayes-optimal, as can be seen in Figure 6.2a.

6.3.2 RockSample

Next, we turn to the RockSample POMDP problem, which has also been shown to to be a

BRL problem by Chen et al. (2016), to demonstrate how much our algorithm can improve

beyond the experts. In this problem, the agent is in a grid world where rocks are positioned

at a set of predetermined locations (Figure 6.3). The rocks are either good or bad, and

the agent must sense the rock and use the noisy sensor information to determine which rock

to sample. Sampling good rocks provides +10 reward, while sampling bad rocks result in

60

0e+00 1e+06 2e+06
Steps

−4

−2

0

To
ta

lr
et

ur
n

QMDP
DQN

RBQN-FE
RBQN-LE

(a) Total rewards

0.6 0.8 1.0
b(Tiger=LEFT)

−5

0

Q
(b

,a
)

LS OL OR

(b) BRQN-LE expert

Figure 6.2: Tiger. (a) BRQN-FE converges quickly to the

optimum. (b) BRQN-LE produces experts specialized in one

MDP, which opens one of the doors deterministically.

Figure 6.3: RockSample.

Figure from Smith & Sim-

mons (2004).

BRQN-FE DQN BPO QMDP SARSOP

19.34 ± 0.33 0.0 ± 0.0 7.35 ± 0.0 16.58 ± 0.99 21.47 ± 0.04

Table 6.1: RockSample with 95% confidence interval.

-10 penalty. This problem is very challenging because the agent has to associate the sparse

rewards on the rocks with sensing actions which do not have immediate rewards. We use the

setting with 8 rocks in a 7× 7 grid.

Table 6.1 shows the comparison of BRQN-FE with other algorithms. Vanilla DQN was

not able to learn this relationship, resulting in zero rewards. BPO learns to go straight to

the goal.

In BRQN-FE, there are 28 = 256 experts. Each expert takes the most value-maximizing

path given a fixed rock configuration of good and bad. BRQN-FE combines the experts’

value functions with the output of the residual network with a weight parameter of 0.01 given

61

to the residual network. The weight parameter was found by offline tuning. Our algorithm in

fact learns to significantly outperform the QMDP agent, getting closer to the near-optimal

value given by SARSOP, an offline appoximate POMDP solver (Kurniawati et al., 2008).

However, we were not able to get BRQN-LE to produce as good as performance as

BRQN-FE, as BRQN-LE struggled to get each of the experts to the level comparable to

optimal experts.

We believe that this shows our algorithm as a potential way to combine optimal control

methods with Bayesian RL approaches to produce an agent which performs beyond what

each optimal control expert can suggest, thus getting the best of both worlds.

6.4 Discussion

We have proposed an algorithm for Bayesian meta-reinforcement learning which simultaneously

trains experts and a residual Q-network. Our algorithm trains each expert solely on the MDP

it is responsible for while training the residual network to learn how to combine the experts

Bayes optimally.

Our results show both limitations of and promising directions for our algorithm. Through

the experiment on Tiger we have verified that the experts in the joint training scenario

indeed learn to be single-MDP experts. From the experiment on RockSample, we show that

the residual network is indeed capable of learning to perform better what the experts propose

even when the experts are optimal with respect to each of the latent MDPs. However, jointly

training the experts and the residual for this large-scale problem turned out to be quite

challenging, even when we warm-started the Q functions with approximated Q values from the

experts. This is in fact a phenomenon commonly observed in Imitation Learning algorithms,

where even a small discrepancy between the learned Q function and the expert Q function

results in the agent exploring unknown domains and therefore failing to learn. On the other

hand, BRQN-FE sheds new light on how to combine experts which can be acquired from

much simpler settings, to get an agent that can handle complex Bayesian RL problems.

62

Chapter 7

BAYESIAN RESIDUAL POLICY OPTIMIZATION

In this chapter, we focus on Bayesian RL problems with complex latent MDPs that may

require multi-modal policies. Analogous to Chapter 6, we build on the following insight: in

the absence of uncertainty, each latent MDP is easier to solve. We first obtain an ensemble of

experts, one for each latent MDP, and fuse their advice to compute a baseline policy. Next, we

train a Bayesian residual policy to improve upon the ensemble’s recommendation and learn to

reduce uncertainty. Our algorithm, Bayesian Residual Policy Optimization (BRPO), imports

the scalability of policy gradient methods and task-specific expert skills. We prove that

BRPO monotonically improve upon the expert ensemble, and empirically demonstrate that

BRPO significantly improves the ensemble of experts and drastically outperforms existing

adaptive RL methods, both in simulated and physical robot experiments.

7.1 Introduction

A Bayesian RL problem can be viewed as a large continuous belief MDP, which is computa-

tionally infeasible to solve directly (Ghavamzadeh et al., 2015). Solving Bayesian RL problems

becomes even harder if the latent MDPs require vastly different policies to achieve high reward.

For example, consider an autonomous vehicle which must safely navigate around pedestrians

navigating to latent goals (Figure 7.1). Depending on the latent goals of the pedestrians, the

agent may make drastic changes to its navigation policy. Robust RL methods (Rajeswaran

et al., 2017; Tobin et al., 2017) often fail to recover that multi-modality.

We build upon a simple yet recurring observation (Choudhury et al., 2018; Osband et al.,

2013): ignoring uncertainty by solving individual latent MDPs is much more tractable than

solving the original belief MDP. If the path for each pedestrian is known, the autonomous

63

Belief over pedestrian goals

Ensemble of
Clairvoyant Experts

Expert 1

Expert k

Recommendation

BRPO
Network

M

Correction

Bayes-optimal Policy

Figure 7.1: An overview of Bayesian Residual Policy Optimization. (a) Pedestrian goals are

latent and tracked as a belief distribution. (b) Experts propose their solutions for a scenario,

which are combined into a mixture of experts. (c) Residual policy takes in the belief and

ensemble’s proposal and returns a correction to the proposal. (d) The combined BRPO and

ensemble policy is Bayes-optimal.

vehicle can invoke a motion planner to avoid collisions. We can think of these solutions

as clairvoyant experts, i.e., experts that think they know the latent MDP and offer advice

accordingly. An ensemble policy of these clairvoyant experts can be surprisingly effective, but

since each expert is individually confident about which MDP the agent faces, the ensemble

never prioritizes uncertainty-reducing or robust actions. Such actions can be critical for

solving the original problem with model uncertainty.

Our algorithm, Bayesian Residual Policy Optimization (BRPO), computes a residual

policy to augment an ensemble of clairvoyant experts (Figure 7.1). This is computed via

policy optimization in a residual belief MDP, induced by the ensemble’s actions on the original

belief MDP. Because the ensemble is near-optimal when the entropy is low, BRPO can

focus on learning to act safely in regions of high entropy. Moreover, the better initialization

provided by the ensemble enables BRPO to learn much faster than methods starting from

64

Expert 1

...
Expert k

Belief

State

Recommendation

BRPO

Network
Correction + Action

Figure 7.2: Bayesian residual policy network architecture.

scratch without experts.

Our key contribution is the following:

• We propose BRPO, a scalable Bayesian RL algorithm.

• We prove that BRPO monotonically improves upon the expert ensemble, converging

to a Bayes-optimal policy.

• We experimentally demonstrate that BRPO outperforms both the ensemble and existing

adaptive RL algorithms in simulation, and apply BRPO to a physical robot task.

7.2 Bayesian Residual Policy Optimization (BRPO)

Bayesian Residual Policy Optimization relies on an ensemble of clairvoyant experts where

each expert solves a latent MDP. This is a flexible design parameter with three guidelines.

First, the ensemble must be fixed before training begins. This freezes the residual belief MDP,

which is necessary for theoretical guarantees (Section 7.2.3). Next, the ensemble should return

its recommendation quickly since it will be queried online at test time. Practically, we have

observed that this factor is often more important than the strength of the initial ensemble;

even weaker ensembles can provide enough of a head start for residual learning to succeed.

Finally, when the belief has collapsed to a single latent MDP, the resulting recommendation

must follow the corresponding expert. In general, the ensemble should become more reliable

as entropy decreases.

65

BRPO performs batch policy optimization in the residual belief MDP, producing actions

that continuously correct the ensemble recommendations. Intuitively, BRPO enjoys improved

data-efficiency because the correction can be small when the ensemble is effective (e.g., when

uncertainty is low or when the experts are in agreement). When uncertainty is high, the

agent learns to override the ensemble, reducing uncertainty and taking actions robust to

model uncertainty.

7.2.1 Ensemble of Clairvoyant Experts

The ensemble policy maps the state and belief to a distribution over actions πe : S×B → P (A).

It combines clairvoyant experts π1, · · · , πk, one for each latent variable φi. Each expert can

be computed via single-MDP RL or optimal control. There are various strategies to produce

an ensemble from a set of experts. Following the maximum a posteriori (MAP) expert of the

ensemble πe = arg maxb(φ) πφ allows BRPO to solve tasks with infinitely many latent MDPs.

The ensemble can also be a weighted sum of expert actions, which is the MAP action for

Gaussian policies.

Maximum a Posteriori as an Ensemble of Experts One choice for the ensemble policy

πe is to select the maximum a posteriori (MAP) action, aMAP = arg maxa
∑k

i=1 b(φi)πi(a|s).
However, computing the MAP estimate may require optimizing a non-convex function, e.g.,

when the distribution is multimodal. We can instead maximize the lower bound using Jensen’s

inequality.

log
k∑

i=1

b(φi)πi(a|s) ≥
k∑

i=1

b(φi) log πi(a|s) (7.1)

This is much easier to solve, especially if log πi(a|s) is convex. If each πi(a|s) is a Gaussian

with mean µi and covariance Σi, the resultant action is the belief-weighted sum of mean

actions:

a∗ = arg max
a

k∑

i=1

b(φi) log πi(a|s) =

[
k∑

i=1

b(φi)Σ
−1
i

]−1 k∑

i=1

b(φi)Σ
−1
i µi

66

7.2.2 Bayesian Residual Policy Learning

Our algorithm is summarized in Algorithm 5. In each training iteration, BRPO collects

trajectories by simulating the current policy on several MDPs sampled from the prior

distribution. At every timestep of the simulation, the ensemble is queried for an action

recommendation (Line 9), which is summed with the correction from the residual policy

network (Figure 7.2) and executed (Line 10-12). The Bayes filter updates the posterior after

observing the resulting state (Line 13). The collected trajectories are the input to a policy

optimization algorithm, which updates the residual policy network.

The BRPO agent effectively experiences a different MDP. In this new MDP, actions are

always shifted by the ensemble recommendation. We formalize this correspondence between

the residual and original belief MDPs in the next section, showing that BRPO inherits the

monotonic improvement guarantee from existing policy optimization algorithms.

7.2.3 BRPO Inherits Motononic Improvement

BRPO guarantees monotonic improvement on the expected return of the mixture between

the ensemble policy πe and the initial residual policy πr0 . First, we observe that πr operates

on its own residual MDP and show that the probability of any state-sequence for πr in the

residual MDP is equal to that of π in the original MDP. Then we observe that the monotonic

guarantee from the underlying policy optimization algorithm holds for πr in the residual

MDP. Combining these, we transfer the guarantee for πr in the residual MDP to π in the

original MDP. The following arguments apply to all MDPs, not just belief MDPs; thus, we’ve

omitted the belief from the state for clarity of exposition.

Let M = 〈S,A, T,R, P0〉 be the original MDP. For simplicity, assume that R depends

only on states. Every πe for M induces a residual MDP Mr equivalent to M except for

the transition function, Tr. For every residual action ar, Tr marginalizes over all expert

67

Algorithm 5 Bayesian Residual Policy Optimization

Require: Bayes filter ψ, belief b0, prior P0, residual policy πr0 , expert πe, horizon T , nitr, nsample

1: for i = 1, 2, · · · , nitr do

2: for n = 1, 2, · · · , nsample do

3: Sample latent MDP M: (s0, φ0) ∼ P0

4: τn ← Simulate(πri−1
, πe, b0, ψ,M, T)

5: πri ← BatchPolicyOpt(πri−1
, {τn}nsample

n=1)

6: return πrbest

7: procedure Simulate(πr, πe, b0, ψ,M, T)

8: for t = 1, · · · , T do

9: aet ∼ πe(st, bt) // Expert recommendation

10: art ∼ πr(st, bt, aet) // Residual policy

11: at ← art + aet

12: Execute at on M, receive rt+1, observe st+1

13: bt+1 ← ψ(st, bt, at, st+1) // Belief update

14: τ ← (s0, b0, ar0 , r1, s1, b1, · · · , sT , bT)

15: return τ

recommendations.

Tr(s
′|s, ar) =

∑

ae

T (s′|s, ae + ar)πe(ae|s) (7.2)

Let πr(ar|s, ae) be a residual policy. The final policy π executed on M is a mixture of πr

and πe.

π(a|s) =
∑

ar

πe(a− ar|s)πr(ar|s, a− ar) (7.3)

First, we note that the probability of observing any sequence of states is equal in both

MDPs. Let ξ = (s0, s1, ..., sT−1) be a sequence of states. Let α = {τ} be the set of all length

T trajectories (state-action sequences) inM with ξ as the states, and β = {τr} be analogously

68

defined for a set of trajectories in Mr. Note that each state-sequence ξ may have multiple

corresponding state-action trajectories {τ}.

Lemma 6. The probability of ξ is equal when executing π on M and πr on Mr, i.e.,

π(ξ) =
∑

τ∈α
π(τ) =

∑

τr∈β
πr(τr) = πr(ξ)

Proof. We prove this by induction. The base case (T = 0) holds trivially since M and Mr

share the same initial state distribution P0. Assuming that it holds for T = t, pick any ξ and

let its last element be s. Consider an s′-extended sequence ξ′ = (ξ, s′). Conditioned on ξ, the

probability of ξ′ is equal in (π,M) and (πr,Mr), which we can see by marginalizing over all

state-action sequences:

∑

τ ′r

πr(τ
′
r|ξ) =

∑

ar

πr(ar|s)Tr(s′|s, ar) (7.4)

=
∑

ar

πr(ar|s)
∑

a

T (s′|s, a)πe(a− ar|s) (7.5)

=
∑

a

∑

ar

πr(ar|s)πe(a− ar|s)T (s′|s, a) (7.6)

=
∑

a

π(a|s)T (s′|s, a) (7.7)

=
∑

τ ′

π(τ ′|ξ) (7.8)

The transition from (7.4) to (7.5) comes from (7.2) and (7.6) to (7.7) comes from (7.3). It

follows that,

π(ξ′) = π(ξ)
∑

τ ′

π(τ ′|ξ) = πr(ξ)
∑

τ ′r

πr(τ
′
r|ξ) = πr(ξ

′),

which proves the lemma.

Lemma 6 immediately leads to the next theorem.

Theorem 7. A residual policy πr executed onMr has the same expected return as the mixture

policy π executed on M.

Eτ∼(π,M)[R(τ)] = Eτr∼(πr,Mr)[R(τr)]

69

Proof. Since reward depends only on the states, R(τ) = R(τr) = R(ξ) for all τ ∈ α, τr ∈ β.

Hence, Lemma 6 implies that the performance of πr on the residual MDP Mr is equivalent

to the BRPO agent’s performance on the original MDP M.

Finally, we observe that the residual policy πr, when executed in Mr, inherits the

monotonic improvement guarantee from PPO (Schulman et al., 2017), the underlying policy

optimization algorithm.

Lemma 8. BRPO monotonically improves the expected return of πr in Mr, i.e.,

J(πri+1
) ≥ J(πri)

with J(πr) = Eτ∼(πr,Mr)[R(τ)], where τ ∼ (πr,Mr) indicates that τ is a trajectory with

actions sampled from πr and executed on Mr.

Proof. BRPO uses PPO for optimization (Schulman et al., 2017). PPO’s clipped surrogate

objective approximates the following objective,

max
θ

Ê
[
πθ(at|st)
πθold

(at|st)
Ât − β ·KL(πθold

(·|st), πθ(·|st))
]
, (7.9)

where πθ is a policy parameterized by θ and πθold
is the policy in the previous iteration, which

correspond to the current and previous residual policies πri , πri−1
in Algorithm 5. Â is the

generalized advantage estimate (GAE) and KL is the Kullback–Leibler divergence between

the two policy distributions. PPO proves monotonic improvement for the policy’s expected

return by bounding the divergence from the previous policy in each update. This guarantee

only holds if both policies are applied to the same residual MDP, i.e. if the ensemble is

fixed.

Combining Theorem 7 with Lemma 8 transfers the monotonic improvement guarantee to

the original MDP M.

Theorem 9. BRPO monotonically improves upon the mixture between ensemble policy πe

and initial residual policy πr0, eventually converging to a locally optimal policy.

70

Proof. From Lemma 8, we have that πr monotonically improves on the residual MDP Mr.

From Theorem 7, monotonic improvement of πr on Mr implies monotonic improvement of

the mixture policy π on the actual MDP M. If the initial residual policy’s actions are small,

the expected return of the mixture policy π on M is close to that of the ensemble πe.

In summary, BRPO tackles RL problems with model uncertainty by building on an

ensemble of clairvoyant experts and optimizing a policy on the residual MDP induced by

the ensemble. Even suboptimal ensembles often provide a strong baseline, resulting in data-

efficient learning and high returns. We empirically evaluate this hypothesis in Section 7.3.

7.3 Experimental Results

We focus on problems highlighting common challenges for robots with model uncertainty. In

these tasks, different latent MDPs require significantly different solutions and costly sensing

is needed for disambiguation. Learned policies must balance robust actions in the face of

uncertainty with uncertainty-reducing actions.

In all domains that we consider, BRPO improves on the ensemble’s recommendation and

significantly outperforms adaptive-RL baselines that do not leverage experts (Section 7.3.1).

Qualitatively, robust Bayes-optimal behavior naturally emerges during training (Section 7.3.1).

Our ablation studies demonstrate that both the belief and ensemble recommendation are

valuable (Section 7.3.3) and that BRPO learns to reduce uncertainty without auxiliary

information-gathering reward bonuses (Section 7.3.4). Finally, through physical experiments

on the MuSHR racecar platform (Srinivasa et al., 2019), we demonstrate that BRPO

agent significantly improves from a simple expert ensemble and is well-suited for real-robot

tasks (Section 7.3.2).

7.3.1 Simulated Experiments

Crowd Navigation Inspired by Cai et al. (2019), an autonomous agent must quickly

navigate past a crowd of people without collisions. Six people cross in front of the agent

71

(a) CrowdNav (b) ArmShelf

Figure 7.3: Setup for CrowdNav and

ArmShelf. In CrowdNav, the goal

for the agent (red) is to drive up-

ward without colliding with pedestri-

ans (other colors). In ArmShelf, the

goal is to reach for the can.

(a) Maze4 (b) Maze10 (c) Door4

Figure 7.4: Sensing locations. In Maze4 and Maze10,

sensing is dense around the starting regions (bot-

tom of Maze4, center of Maze10) and where multiple

latent goals (gray, green) are nearby and must be

disambiguated. In Door4, BRPO only senses when

close to the doors, where the sensor is most accurate.

at fixed speeds, three from each side (Figure 7.3a). Each person noisily walks toward its

latent goal on the other side, which is sampled uniformly from a discrete set of destinations.

The agent observes each person’s speed and position to estimate the belief distribution

for each person’s goal. There is a single expert which uses model predictive control: each

walker is simulated toward a belief-weighted average goal position, and the expert selects

cost-minimizing steering angle and acceleration.

At the beginning of the episode, initial pedestrian positions are sampled uniformly along

the left and right sides of the environment. Speeds are sampled uniformly between 0.1 and 1.0

m/s. The agent observes each person’s speed and position to estimate the goal distribution.

The agent starts at the bottom of the environment, with initial speed sampled uniformly

from 0 to 0.4 m/s. The agent controls acceleration and steering angle, bounded between

±0.12 m/s2 and ±0.1 rad. Pedestrians are modeled as a 1m diameter circle. The agent is

modeled as a rectangular vehicle of 0.5 m width and 2 m length. A collision results in a

terminal cost of 100 · (2v)2 + 0.5. Successfully reaching the top of the environment produces

72

terminal reward of 250, while navigating to the left or right side results in terminal cost of

1000. A per timestep penalty of 0.1 encourages the agent to complete the episode quickly.

Cartpole In this environment, the agent’s goal is to keep the cartpole upright for as long

as possible. The latent parameters are cart mass and pole length, uniformly sampled from

[0.5, 2.0]kg × [0.5, 2.0]m. The agent’s estimator is a 3× 3 discretization of the 2D continuous

latent space, and the resulting belief is a categorical distribution over that grid. Each expert

is a Linear-Quadratic Regulator (LQR) for the center of each grid square. The ensemble is

the belief-weighted sum of experts.

The cartpole initializes with small initial velocity around the upright position. The

environment terminates when the pole is more than 1.2 rad away from the vertical upright

position or the cart is 4.0 m away from the center. The agent is rewarded by 1 for every step

the cartpole survives. The environment has finite horizon of 500 steps.

Object Localization In the ArmShelf environment, the agent must localize an object

without colliding with the environment or the object. The continuous latent variable is the

object’s pose, which is anywhere on either shelf of the pantry (Figure 7.3b). The agent

receives a noisy observation of the object’s pose upon sensing, which is less noisy as the

end-effector approaches the object. The agent uses an Extended Kalman Filter to track

the object’s pose. The ensemble is the MAP expert which takes the MAP object pose and

proposes a collision-free movement toward the object.

The agent can control the end-effector in the (x, y, z) directions. The goal is to move the

hand to the object without colliding with the environment or object. The agent observes the

top and bottom shelf poses, end-effector pose, arm configuration, and the noise scale. The

noise scale is the standard deviation of the Gaussian noise on the agent’s observation of the

object’s pose. Without sensing, the noise is very large: w ∼ N (0, 5.02) where the width of

the shelf is only 0.35 m, When sensing is invoked, the noise is reduced to w ∼ N (0, d2) where

d is the distance between the object and the end-effector.

73

Latent Goal Mazes In the Maze4 and Maze10, the agent must identify which latent goal

is active. At the beginning of each episode, the latent goal is set to one of four or ten goals.

The agent is rewarded for reaching the active goal and penalized for reaching an inactive goal.

The agent receives a noisy measurement of the distance to the goal, with noise proportional

to the true distance. Each expert proposes an action (computed via motion planning) that

navigates to the corresponding goal. The ensemble recommends the belief-weighted sum of

the experts’ suggestions.

The agent observes its current position, velocity, and distance to all latent goals. If

sensing is invoked, it also observes the noisy distance to the goal. In addition, the agent

observes the categorical belief distribution over the latent goals. In Maze4, reaching the active

goal provides a terminal reward of 500, while reaching an incorrect goal gives a penalty of

500. The task ends when the agent receives either the terminal reward or penalty, or after

500 timesteps. In Maze10, the agent receives a penalty of 50 and continues to explore after

reaching an incorrect goal.

Doors There are four possible doors to the next room of the Door4 environment. At the

beginning of each episode, each door is opened or closed with 0.5 probability. To check

the doors, the agent can either sense or crash into them (which costs more than sensing).

Sensing returns a noisy binary vector for all four doors with exponentially-decreasing accuracy

proportional to the distance to each door. Crashing returns an accurate indicator of the

door it crashed into. Each expert navigates directly through the closest open door, and the

ensemble recommends the belief-weighted sum of experts.

To check the doors, the agent can either sense (−1) or crash into them (−10). At every step,

the agent observes its position, velocity, distance to goal, and whether it crashed or passed

through a door. In addition, the agent observes the categorical distribution over the 24 = 16

possible door configurations (from the Bayes filter) and the ensemble’s recommendation. The

agent receives a terminal reward of 100 if it reaches the goal within 300 timesteps.

74

BRPO UPMLE BPO Ensemble

2.5E+03
-200

+100

(a) CrowdNav

5.0E+02
0

+500

(b) Cartpole

2.5E+02
-200

+100

(c) ArmShelf

1.2E+05
0

+500

(d) Maze4

1.2E+03
0

+500

(e) Maze10

1.2E+05
0

+100

(f) Door4

Figure 7.5: Training curves. BRPO dramatically outperforms agents that do not leverage

expert knowledge (BPO, UP-MLE), and significantly improves the ensemble of experts.

BRPO Improves Ensemble, Outperforms Adaptive Methods

We compare BRPO to adaptive RL algorithms that consider the belief over latent states:

BPO and UP-MLE, a modification to (Yu et al., 2017) that augments the state with the

Bayes filter’s maximum likelihood estimate. Neither approach can incorporate experts.

We also compare with the ensemble of experts baselines, which does not take any sensing

actions (as discussed in Section 7.2). For tasks requiring explicit sensing actions (ArmShelf,

Maze4, Maze10, Door4), we strengthen the ensemble by sensing with probability 0.5 at each

timestep. More sophisticated sensing strategies require more task-specific knowledge to design;

see Section 7.3.5 for more discussion.

Figure 7.5 compares the training performance of all algorithms across the six environ-

ments. Note that BRPO’s initial policy does not exactly match the ensemble: the random

initialization for the residual policy network adds zero-mean noise around the ensemble policy,

which may result in an initial drop relative to the ensemble (Figure 7.5c, Figure 7.5d).

On the wide variety of problems we have considered, BRPO agents perform dramatically

better than BRPO and UP-MLE agents. BRPO and UP-MLE were unable to match the

performance of BRPO, except on the simple Cartpole environment. This seems to be due

to the complexity of the latent MDPs, discussed further in Section 7.3.6. In fact, for Maze4

and Maze10, we needed to modify the reward function to encourage information-gathering

75

Figure 7.6: Rollout on CarNav, a modified CrowdNav for the physical MuSHR cars. The

BRPO agent waits, detours, and accelerates around other cars to reach the goal quickly.

for BRPO and UP-MLE; without such reward bonuses, they were unable to learn any

meaningful behavior. We study the effect that such a reward bonus would have on BRPO in

Section 7.3.4. For Cartpole, both BRPO and UP-MLE learned to perform optimally but

required much more training time than BRPO.

BRPO Learns Bayes-Optimal Behavior

For Maze4, Maze10 and Door4, we have visualized where the agent invokes explicit sens-

ing (Figure 7.4). For Maze4 and Maze10, the BRPO agent learns to sense when goals must

be distinguished, e.g. whenever the road diverges. For Door4, it senses only when that

is most cost-effective: near the doors, where accuracy is highest. This results in a rather

interesting policy in which the agent dashes to the wall, senses only once or twice, and drives

through the closest open door. The BRPO agent avoids crashing in almost all scenarios. We

refer the reader to Section 7.3.6 for more qualitative analysis, including keyframes of a few

representative trajectories.

7.3.2 MuSHR Car Experiment

We modify CrowdNav to run an experiment with MuSHR cars (Srinivasa et al., 2019). The

BRPO agent controls one, while three others represent pedestrians (reduced from CrowdNav

due to space constraints). Each car is roughly 30 cm wide and 50 cm long, and is controlled

by forward velocity and steering angle. Poses for all cars are tracked using an array of twelve

76

BRPO Ensemble

Real
Success Rate (%) 96.6 (29/30) 36.6 (11/30)

Navigation Time (s) 12.4± 0.2 18.3± 0.8

Simulation
Success Rate (%) 97.2± 0.04 24.0± 0.2

Navigation Time (s) 6.3± 0.2 10.5± 0.1

Table 7.1: Comparison of BRPO and the expert ensemble on the CarNav environment. In

both simulation and on the physical system, BRPO succeeds much more often and requires

less time to navigate because it accelerates when safe. Navigation time is only measured for

successful trials.

OptiTrack PrimeX 22 cameras. As before, the agent aims to navigate past the “pedestrians”

as they noisily move toward their latent goals (Figure 7.6). Section ?? contains further

details.

We use a very simple ensemble to represent computational constraints that may be present

with a physical robot. There is only one expert in this ensemble, which assumes that the

pedestrians will remain static as it plans forward. It uses model predictive control to avoid

these obstacles as it navigates toward its goal, and is restricted to a fixed forward velocity of

0.4 m/s and steering angle between [−0.2, 0.2] radians. We train the agent in simulation and

execute directly on the car.

BRPO improves on this very simple baseline, successfully completing the task without

collisions in 29 of 30 real-world trials. Table 7.1 compares the performance of BRPO

with the ensemble in both the real and simulated environments. In both cases, BRPO

dramatically improves on the ensemble’s success rate. Furthermore, the BRPO agent reduces

the navigation time by 36.7% in simulation and 32.2% with the physical robot, indicating

that it learns to navigate both safely and quickly.

Qualitatively, the BRPO agent often starts slowly. The pedestrians’ latent goals are

77

usually clearer by the time it passes the first car, at which point it can accelerate. Depending

on the latent goals, the agent occasionally waits for pedestrians to pass or detours around

them. Since the expert moves at a fixed velocity, all deceleration and acceleration emerges

naturally from training with BRPO. Figure 7.6 shows snapshots from one rollout to illustrate

some of this behavior; more recorded trials are available in the supplementary video.

MuSHR Car Experiment Details The “pedestrians” cross a region of 3.5 m width and

5 m height, randomly starting from either side. The y-coordinates of their initial positions

and goals are randomly chosen between [1.5, 3.8] m such that they can move straight to their

goals without collision. The agent only observes their poses and velocities, with which it runs

a Bayes filter over their latent goal positions. Poses and velocities for all cars are tracked

with an array of twelve OptiTrack PrimeX 22 cameras. At the beginning of each episode,

pedestrians start moving after a random delay between [0, 1] seconds, with random speeds

chosen between [0.5, 0.6] m/s. The BRPO agent starts at the bottom row, y = −0.1 m. The

goal is to navigate to y = 4.5 m as quickly as possible without hitting the pedestrians or

passing the environment border, drawn in green in Figure 7.6.

Simulated Training Environment To mimic the physical robot’s dynamics, the velocity

is scaled by a factor of 0.8. Furthermore, because the car often stops when the commanded

velocity drops below 0.3 m/s, the simulation rounds values below that threshold down to

0. The scaled velocity is clamped to the maximum velocity of 0.6 m/s. Gaussian noise

is clamped at one standard deviation and added to the velocity and steering angle, with

standard deviations of 0.1 m/s and 0.05 radians.

In training, the agent is rewarded 10 for successfully reaching the terminal condition

y = 4.5. When the agent is within 0.65 m of any other cars or 0.5 m of the left or right

borders, the agent receives a penalty of -10 and the episode terminates. Otherwise, the

agent receives −0.005 + (4.5 − y) − 0.05‖θ‖ where y is the car’s y-coordinate and θ is its

rotation, counterclockwise from y-axis. Unlike the ensemble, which has fixed velocity and

78

only chooses the steering angle, the BRPO agent outputs both velocity and steering angle

corrections. The final commanded velocity is computed as above, and the steering angle is

clamped between [−0.3, 0.3] radians.

Belief + Rec. Rec. only Ensemble

1.2E+05
0

+500

(a) Maze4

1.2E+03
0

+500

(b) Maze10

1.2E+05
0

+100

(c) Door4

Figure 7.7: Ablation study on input features.

Including both belief and recommendation

results in faster learning in Door4.

ε = 0 ε = 10 ε = 100 Ensemble

1.2E+05
0

+500

(a) Maze4

1.2E+03
0

+500

(b) Maze10

1.2E+05
0

+100

(c) Door4

Figure 7.8: Ablation study on information-

gathering reward (Equation 7.10). BRPO is

robust to information-gathering reward.

7.3.3 Ablation Study: Residual Policy Inputs

The BRPO policy takes the belief distribution, state, and ensemble recommendation as inputs

(Figure 7.2). We considered two versions of BRPO with different inputs: only recommendation

(which implicitly encodes belief), and one with both recommendation and belief.

Figure 7.7 shows that providing both belief and recommendation as inputs to the policy is

important. Although BRPO with only the recommendation performs comparably to BRPO

with both inputs on Maze4 and Maze10, the one with both inputs learns faster on Door4.

7.3.4 Ablation Study: Information-Gathering Reward Bonuses

Because BRPO maximizes the Bayesian Bellman equation (Equation 4.1), exploration

is incorporated into its long-term objective. As a result, auxiliary rewards to encourage

exploration are unnecessary. However, existing work that does not explicitly consider the

belief has suggested various auxiliary reward terms to encourage exploration, such as surprisal

79

rewards (Achiam & Sastry, 2017) or intrinsic rewards (Pathak et al., 2017). To investigate

whether such rewards benefit the BRPO agent, we augment the reward function with the

following auxiliary bonus from Chen et al. (2016):

r̃(s, b, a) = r(s, b, a) + ε · Eb′ [‖b− b′‖1] (7.10)

where ‖b− b′‖1 =
∑k

i=1 |b(φi)− b′(φi)| rewards change in belief.

Figure 7.8 summarizes the performance of BRPO when training with ε = 0, 10, 100.

Too much emphasis on information-gathering causes the agent to over-explore and therefore

underperform. In Door4 with ε = 100, we qualitatively observe that the agent crashes into

the doors more often. Crashing significantly changes the belief for that door; the huge reward

bonus outweighs the penalty of crashing from the environment.

We find that BRPO and UP-MLE are unable to learn without an exploration bonus

on Maze4, Maze10, and Door4. We used ε = 1 for Maze4 and Door4, and ε = 100 for Maze10.

Upon qualitative analysis, we found that the bonus helps BRPO and UP-MLE learn to

sense initially, but the algorithms are unable to make further progress. We believe that this

is because solving the latent mazes is challenging.

7.3.5 Ablation Study: Better Sensing Ensemble

The ensemble we used for training BRPO in Figure 7.5 randomly senses with probability 0.5.

An ensemble baseline policy that senses more effectively could be designed manually, and

used as the initial policy for the BRPO agent to improve on. Note that in general, designing

such a policy can be challenging: it requires either task-specific knowledge, or solving an

approximate Bayesian RL problem. We bypass these requirements by using BRPO.

On the Maze10 environment, we have found via offline tuning that a more effective

ensemble baseline agent senses only for the first 150 of 750 timesteps. Table 7.2 shows that

BRPO results in higher average return and success rate. The performance gap comes from

the suboptimality of the ensemble recommendation, as experts are unaware of the penalty for

reaching incorrect goals.

80

BRPO RandomSensing BetterSensing

Avg. Return 465.7 ± 4.7 409.5 ± 10.8 416.3 ± 9.4

Success Rate 100% - 96.3%

Table 7.2: Comparison of BRPO and ensembles on Maze10.

7.3.6 Qualitative Behavior Analysis

Figure 7.9 shows some representative trajectories taken by BRPO agents. Across multiple

environments (CrowdNav, Maze4, Maze10), we see that the BRPO agent adapts to the evolving

posterior. As the posterior over latent goals updates, the agent shifts directions. While

this rerouting partly emerges from the ensemble policies as the posterior sharpens, BRPO’s

residual policy reduces uncertainty (Maze4, Maze10) and pushes the agent to navigate faster,

resulting in higher performance than the ensembles.

7.4 Discussion

Our algorithm, Bayesian Residual Policy Optimization, builds on an ensemble of experts by

operating within the resulting residual belief MDP. We prove that this strategy preserves guar-

antees, such as monotonic improvement, from the underlying policy optimization algorithm.

The scalability of policy gradient methods, combined with task-specific expertise, enables

BRPO to quickly solve a wide variety of complex problems, such as navigating through a

crowd of pedestrians. BRPO improves on the original ensemble of experts and achieves much

higher rewards than existing Bayesian RL algorithms by sensing more efficiently and acting

more robustly.

Although out of scope for this work, a few key challenges remain. First is an efficient

construction of an ensemble of experts, which becomes particularly important for continuous

latent spaces with infinitely many MDPs. Infinitely many MDPs do not necessarily require

81

infinite experts, as many may converge to similar policies. An important future direction is

subdividing the latent space and computing a qualitatively diverse set of policies. Another

challenge is developing an efficient Bayes filter, which is an active research area. In certain

occasions, the dynamics of the latent MDPs may not be accessible, which would require

a learned Bayes filter. Combined with a tractable, efficient Bayes filter and an efficiently

computed set of experts, we believe that BRPO will provide an even more scalable solution

for BRL problems.

82

(a) CrowdNav. Arrows are the directions to discrete latent goals; transparency

indicates the posterior probability of the corresponding goal, and its length indicates

the speed. The agent changes direction as it anticipates collision.

(b) Latent goal mazes with four (Maze4) and ten (Maze10) possible goals. The agent

senses as it navigates, changing its direction as goals are deemed less likely (more

transparent). We have marked the true goal with red in the last frame for clarity.

(c) Door4. The agent senses only when it is near the wall with doors, where sensing

is most accurate. The transparency of the red bars indicates the posterior probability

that the door is blocked. With sensing, the agent notices that the third door is open.

Figure 7.9: BRPO policy keyframes. Best viewed in color.

83

Chapter 8

CONCLUSION

This thesis addresses the problem of solving complex control tasks in continuous state and

action spaces under model uncertainty. We formulate this problem as Bayesian Reinforcement

Learning, in which latent models are tracked as beliefs. To address the challenge of scalability,

we present algorithms that leverage structural priors to improve data-efficiency and accelerate

learning. Through mathematical analyses we bound the sample complexity of a PAC-Bayes

algorithm, BCPACE, and prove that BRPO improves monotonically from an ensemble

of experts. Through demonstrations in simulation and physical tasks, we show that our

algorithms outperform adaptive RL algorithms and are well suited for real robot tasks that

require fast and reactive controls.

The empirical success of our algorithms partially depends on a set of assumptions we

have made. Mainly, we assume that (1) the distribution over latent states can be represented

compactly, that (2) model-based Bayes filters are available, and that (3) the model prior

approximately matches the real world. While these assumptions hold for many practical

applications, relaxing them can extend our algorithms to a more diverse set of problems. In

the remainder of this chapter, we discuss the assumptions and how one may relax them.

Efficient choice of latent models and experts Although BPO and BRPO can han-

dle any belief representation and scale to fine-grained discretizations of latent space, our

experiments suggest that each problem has an optimal discretization level, beyond which

further discretization may degrade performance. For BRPO, the discretization extends

to the construction of an ensemble of experts. For these algorithms, an efficient choice of

latent models and experts can significantly reduce the computational burden. Even when

84

the model prior assumes infinitely many MDPs, it does not necessarily require an infinite

number of nominal models or experts, as many may have similar dynamics and converge to

similar policies. It may be preferable to perform variable-resolution discretization rather than

single-resolution discretization. Adapting iterative densification ideas previously explored

in motion planning (Gammell et al., 2015) and optimal control (Munos & Moore, 1999) to

the discretization of latent space may yield a compact belief representation and improved

performance.

Learned belief representations Across all our Bayesian RL algorithms, we have used

model-based Bayes filters, which is commonly used in many POMDP algorithms. On certain

occasions, however, the dynamics of the latent MDPs may not be accessible, which would

require a learned Bayes filter. Combined with tractable, efficient Bayes filters, our algorithms

will provide an even more scalable solution for BRL problems.

An alternative to the model-based Bayes filter is learning to directly map a history of

observations to a lower-dimensional belief embedding, analogous to Peng et al. (2018). This

would enable a policy to learn a meaningful belief embedding without losing information

from our a priori choice of discretization. We could also utilize a likelihood-free posterior

inference method introduced in Papamakarios & Murray (2016), which trains a Bayesian

conditional density estimator that takes in trajectories and outputs a set of parameters that

defines the distribution over the latent parameters.

Improving model priors While BPO and BRPO provide Bayes-optimal policies, they

do not improve model priors nor capture the unmodeled part of the real world. Ideally, the

model prior used by our agent should improve and adapt to match the real world. To achieve

a Bayesian RL framework whose model prior improves over time, we can combine BPO and

BRPO with model learning. The agent can iteratively improve the model prior from data

and update its policy using the improved prior. Analogous to GP-ILQG, we can capture the

unmodeled component of the real-world through semi-parametric model learning.

85

BIBLIOGRAPHY

Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Using inaccurate models in reinforce-

ment learning. In William W. Cohen and Andrew Moore (eds.), Proceedings of the 23th

International Conference on Machine Learning (ICML-06), pp. 1–8, 2006. URL http://

www.machinelearning.org/proceedings/icml2006/001_Using_Inaccurate_Mod.pdf.

Douglas Aberdeen. A (revised) survey of approximate methods for solving partially observable

markov decision processes. National ICT Australia, Canberra, Australia, 2003.

Douglas Aberdeen and Jonathan Baxter. Scaling internal-state policy-gradient methods for

POMDPs. In International Conference on Machine Learning, 2002.

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement

learning. arXiv preprint arXiv:1703.01732, 2017.

John Asmuth, Lihong Li, Michael L Littman, Ali Nouri, and David Wingate. A bayesian

sampling approach to exploration in reinforcement learning. In Conference on Uncertainty

in Artificial Intelligence, 2009.

Christopher G Atkeson, Andrew W Moorey, and Stefan Schaalz. Locally weighted learning.

Artif Intell Rev, 11(1-5):11–73, 1997.

Haoyu Bai, David Hsu, and Wee Sun Lee. Integrated perception and planning in the

continuous space: A pomdp approach. The International Journal of Robotics Research, 33

(9), 2014.

Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emer-

gent complexity via multi-agent competition. In International Conference on Learning

Representations, 2018.

http://www.machinelearning.org/proceedings/icml2006/001_Using_Inaccurate_Mod.pdf
http://www.machinelearning.org/proceedings/icml2006/001_Using_Inaccurate_Mod.pdf

86

Tamer Başar and Pierre Bernhard. H-infinity optimal control and related minimax design

problems: a dynamic game approach. Springer Science & Business Media, 2008.

Jonathan Baxter. Theoretical models of learning to learn. In Learning to learn, pp. 71–94.

Springer, 1998.

Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research,

12:149–198, 2000.

Felix Berkenkamp and Angela P Schoellig. Safe and robust learning control with gaussian

processes. In 2015 European Control Conference (ECC), pp. 2496–2501. IEEE, 2015.

Adrian Boeing and Thomas Bräunl. Leveraging multiple simulators for crossing the reality gap.

In Control Automation Robotics & Vision (ICARCV), 2012 12th International Conference

on, pp. 1113–1119. IEEE, 2012.

Ronen I Brafman and Moshe Tennenholtz. R-max - A general polynomial time algorithm for

near-optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231,

2002.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie

Tang, and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Panpan Cai, Yuanfu Luo, Aseem Saxena, David Hsu, and Wee Sun Lee. Lets-drive: Driving

in a crowd by learning from tree search. arXiv preprint arXiv:1905.12197, 2019.

Min Chen, Emilio Frazzoli, David Hsu, and Wee Sun Lee. POMDP-lite for robust robot

planning under uncertainty. In IEEE International Conference on Robotics and Automation,

2016.

Ching-An Cheng, Andrey Kolobov, and Alekh Agarwal. Policy improvement from multiple

experts. arXiv preprint arXiv:2007.00795, 2020.

87

Sanjiban Choudhury, Mohak Bhardwaj, Sankalp Arora, Ashish Kapoor, Gireeja Ranade,

Sebastian Scherer, and Debadeepta Dey. Data-driven planning via imitation learning. The

International Journal of Robotics Research, 37(13-14):1632–1672, 2018.

Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. In AAAI Conference

on Artificial Intelligence, 1998.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach

to policy search. In Proceedings of the 28th International Conference on machine learning

(ICML-11), pp. 465–472, 2011.

Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for

robotics. Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep

reinforcement learning for continuous control. In International Conference on Machine

Learning, 2016a.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel.

Rl2: Fast reinforcement learning via slow reinforcement learning. arXiv preprint

arXiv:1611.02779, 2016b.

Michael O’Gordon Duff and Andrew Barto. Optimal Learning: Computational procedures

for Bayes-adaptive Markov decision processes. PhD thesis, University of Massachusetts at

Amherst, 2002.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast

adaptation of deep networks. In Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pp. 1126–1135. JMLR. org, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning.

arXiv preprint arXiv:1806.02817, 2018.

88

Yoav Freund and Robert Schapire. A short introduction to boosting. Journal-Japanese

Society For Artificial Intelligence, 14(771-780):1612, 1999.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. arXiv preprint arXiv:1506.02142, 2, 2015.

Jonathan Gammell, Siddhartha Srinivasa, and Timothy Barfoot. Batch informed trees (BIT*):

Sampling-based optimal planning via the heuristically guided search of implicit random

geometric graphs. In IEEE International Conference on Robotics and Automation, 2015.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian

reinforcement learning: A survey. Foundations and Trends® in Machine Learning, 8(5-6):

359–483, 2015.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting

gradient-based meta-learning as hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018.

Arthur Guez, David Silver, and Peter Dayan. Efficient Bayes-adaptive reinforcement learning

using sample-based search. In Advances in Neural Information Processing Systems, 2012.

Arthur Guez, Nicolas Heess, David Silver, and Peter Dayan. Bayes-adaptive simulation-based

search with value function approximation. In Advances in Neural Information Processing

Systems, 2014.

Iain Guilliard, Richard J Rogahn, Jim Piavis, and Andrey Kolobov. Autonomous thermalling

as a partially observable markov decision process. In Robotics: Science and Systems, 2018.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-

reinforcement learning of structured exploration strategies. In Advances in Neural Infor-

mation Processing Systems, pp. 5302–5311, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9

(8):1735–1780, 1997.

89

David Hsu, Nan Rong, and Wee S Lee. What makes some pomdp problems easy to approxi-

mate? In Advances in Neural Information Processing Systems, 2008.

Dongsung Huh and Emanuel Todorov. Real-time motor control using recurrent neural networks.

In Adaptive Dynamic Programming and Reinforcement Learning, 2009. ADPRL’09. IEEE

Symposium on, pp. 42–49. IEEE, 2009.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep

variational reinforcement learning for pomdps. arXiv preprint arXiv:1806.02426, 2018.

David H Jacobson and David Q Mayne. Differential dynamic programming. 1970.

S. Javdani, S.S. Srinivasa, and J.A. Bagnell. Shared autonomy via hindsight optimization. In

Robotics: Science and Systems, 2015.

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias Loskyll,

Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual reinforcement learning

for robot control. In 2019 International Conference on Robotics and Automation (ICRA),

pp. 6023–6029. IEEE, 2019.

Leslie Pack Kaelbling, Michael Littman, and Anthony Cassandra. Planning and acting in

partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

Sham Kakade, Michael J Kearns, and John Langford. Exploration in metric state spaces. In

International Conference on Machine Learning, 2003.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. PhD

thesis, University College London (University of London), 2003.

R.E. Kalman. A new approach to linear filtering and prediction problems. Journal of Basic

Engineering, 82(1):35–45, 1960.

Peter Karkus, David Hsu, and Wee Sun Lee. QMDP-Net: Deep learning for planning under

partial observability. In Advances in Neural Information Processing Systems, 2017.

90

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.

Machine learning, 49(2-3):209–232, 2002.

Michael Kearns, Yishay Mansour, and Andrew Y Ng. A sparse sampling algorithm for

near-optimal planning in large markov decision processes. Machine learning, 49(2-3):

193–208, 2002.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.

The International Journal of Robotics Research, 32(11):1238–1274, 2013.

Svetoslav Kolev and Emanuel Todorov. Physically consistent state estimation and system

identification for contacts. In Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th

International Conference on, pp. 1036–1043. IEEE, 2015.

Zico Kolter and Andrew Ng. Near-Bayesian exploration in polynomial time. In International

Conference on Machine Learning, 2009.

Hanna Kurniawati, David Hsu, and Wee Sun Lee. SARSOP: Efficient point-based POMDP

planning by approximating optimally reachable belief spaces. In Robotics: Science and

Systems, 2008.

Gilwoo Lee, Brian Hou, Aditya Mandalika, Jeongseok Lee, Sanjiban Choudhury, and Sid-

dhartha S. Srinivasa. Bayesian policy optimization for model uncertainty. In International

Conference on Learning Representations, 2019.

Sergey Levine and Vladlen Koltun. Guided policy search. In ICML (3), pp. 1–9, 2013.

Lihong Li. A unifying framework for computational reinforcement learning theory. PhD thesis,

Rutgers University-Graduate School-New Brunswick, 2009.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear

biological movement systems.

91

Yanbo Li, Zakary Littlefield, and Kostas E. Bekris. Asymptotically optimal sampling-based

kinodynamic planning. The International Journal of Robotics Research, 35(5):528–564,

2016.

Michael Littman, Anthony Cassandra, and Leslie Pack Kaelbling. Learning policies for

partially observable environments: Scaling up. In International Conference on Machine

Learning, 1995a.

Michael L Littman, Anthony R Cassandra, and Leslie Pack Kaelbling. Learning policies

for partially observable environments: Scaling up. In Machine Learning Proceedings, pp.

362–370. 1995b.

CK Liu and S Jain. A short tutorial on multibody dynamics. Georgia Institute of Technology,

School of Interactive Computing, Tech. Rep. GIT-GVU-15-01-1, 8, 2012.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic

planning and infinite-horizon partially observable markov decision problems. In AAAI

Conference on Artificial Intelligence, 1999.

MATLAB. version 9.1.0 (R2016b). The MathWorks Inc., Natick, Massachusetts, 2016.

Tad McGeer. Passive Dynamic Walking. The International Journal of Robotics Research,

9(2):62–82, 1990. doi: 10.1177/027836499000900206. URL http://ijr.sagepub.com/

content/9/2/62.abstract.

Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, and Chelsea

Finn. Guided meta-policy search. CoRR, abs/1904.00956, 2019a.

Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, and Chelsea

Finn. Guided meta-policy search. arXiv preprint arXiv:1904.00956, 2019b.

Djordje Mitrovic, Stefan Klanke, and Sethu Vijayakumar. Adaptive optimal feedback control

http://ijr.sagepub.com/content/9/2/62.abstract
http://ijr.sagepub.com/content/9/2/62.abstract
http://ijr.sagepub.com/content/9/2/62.abstract

92

with learned internal dynamics models. In From Motor Learning to Interaction Learning

in Robots, pp. 65–84. Springer, 2010.

Igor Mordatch, Kendall Lowrey, and Emanuel Todorov. Ensemble-CIO: Full-body dynamic

motion planning that transfers to physical humanoids. In IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, 2015.

Igor Mordatch, Nikhil Mishra, Clemens Eppner, and Pieter Abbeel. Combining model-based

policy search with online model learning for control of physical humanoids. In Robotics and

Automation (ICRA), 2016 IEEE International Conference on, pp. 242–248. IEEE, 2016.

Jun Morimoto and Kenji Doya. Robust reinforcement learning. In Advances in Neural

Information Processing Systems, 2001.

Remi Munos and Andrew Moore. Variable resolution discretization for high-accuracy solutions

of optimal control problems. In International Joint Conference on Artificial Intelligence,

1999.

Kumpati S Narendra and Kannan Parthasarathy. Identification and control of dynamical

systems using neural networks. IEEE Transactions on neural networks, 1(1):4–27, 1990.

Sylvie CW Ong, Shao Wei Png, David Hsu, and Wee Sun Lee. Planning under uncertainty

for robotic tasks with mixed observability. The International Journal of Robotics Research,

29(8):1053–1068, 2010.

Pedro A. Ortega, Jane X. Wang, Mark Rowland, Tim Genewein, Zeb Kurth-Nelson, Razvan

Pascanu, Nicolas Heess, Joel Veness, Alexander Pritzel, Pablo Sprechmann, Siddhant M.

Jayakumar, Tom McGrath, Kevin Miller, Mohammad Gheshlaghi Azar, Ian Osband, Neil C.

Rabinowitz, András György, Silvia Chiappa, Simon Osindero, Yee Whye Teh, Hado van

Hasselt, Nando de Freitas, Matthew Botvinick, and Shane Legg. Meta-learning of sequential

strategies. arXiv preprint arXiv:1905.03030, 2019.

93

Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning

via posterior sampling. In Advances in Neural Information Processing Systems, 2013.

Chris J Ostafew, Angela P Schoellig, and Timothy D Barfoot. Learning-based nonlinear

model predictive control to improve vision-based mobile robot path-tracking in challenging

outdoor environments. In IEEE International Conference on Robotics and Automation, pp.

4029–4036. IEEE, 2014.

Chris J Ostafew, Angela P Schoellig, and Timothy D Barfoot. Conservative to confident: treat-

ing uncertainty robustly within learning-based control. In IEEE International Conference

on Robotics and Automation, pp. 421–427. IEEE, 2015.

Yunpeng Pan and Evangelos Theodorou. Probabilistic differential dynamic programming. In

Advances in Neural Information Processing Systems, pp. 1907–1915, 2014.

Yunpeng Pan and Evangelos A Theodorou. Data-driven differential dynamic programming

using gaussian processes. In American Control Conference (ACC), 2015, pp. 4467–4472.

IEEE, 2015.

Yunpeng Pan, Xinyan Yan, Evangelos Theodorou, and Byron Boots. Scalable reinforcement

learning via trajectory optimization and approximate gaussian process regression. NIPS

Workshop on Advances in Approximate Bayesian Inference, 2015.

Christos Papadimitriou and John Tsitsiklis. The complexity of Markov decision processes.

Mathematics of Operations Research, 12(3):441–450, 1987.

George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with

bayesian conditional density estimation, 2016.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven

exploration by self-supervised prediction. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pp. 16–17, 2017.

94

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary.

Robust deep reinforcement learning with adversarial attacks. In International Conference

on Autonomous Agents and Multiagent Systems, 2018.

Jason Pazis and Ronald Parr. Pac optimal exploration in continuous space markov decision

processes. In AAAI Conference on Artificial Intelligence, 2013.

Jason Pazis and Ronald Parr. Efficient pac-optimal exploration in concurrent, continuous

state mdps with delayed updates. In AAAI Conference on Artificial Intelligence, 2016.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real

transfer of robotic control with dynamics randomization. In IEEE International Conference

on Robotics and Automation, 2018.

Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based value iteration: An anytime

algorithm for pomdps. In International Joint Conference on Artificial Intelligence, 2003a.

Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. Point-based value iteration: An anytime

algorithm for POMDPs. In International Joint Conference on Artificial Intelligence, 2003b.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial

reinforcement learning. In International Conference on Machine Learning, 2017.

Robert Platt, Russ Tedrake, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Belief space

planning assuming maximum likelihood observations. In Robotics: Science and Systems,

2010.

Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution to discrete

bayesian reinforcement learning. In International Conference on Machine Learning, 2006.

Joaquin Quiñonero-Candela, Carl Edward Rasmussen, AnÃbal R Figueiras-Vidal, et al.

Sparse spectrum gaussian process regression. Journal of Machine Learning Research, 11

(Jun):1865–1881, 2010.

95

Neil C. Rabinowitz. Meta-learners’ learning dynamics are unlike learners’. arXiv preprint

arXiv:1905.01320, 2019.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine. EPOpt:

Learning robust neural network policies using model ensembles. In International Conference

on Learning Representations, 2017.

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient

off-policy meta-reinforcement learning via probabilistic context variables. arXiv preprint

arXiv:1903.08254, 2019.

Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine learning

(gpml) toolbox. Journal of Machine Learning Research, 11(Nov):3011–3015, 2010.

Stephane Ross and J Andrew Bagnell. Agnostic system identification for model-based

reinforcement learning. 2012.

Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. Bayes-adaptive POMDPs. In Advances

in Neural Information Processing Systems, 2008.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust

region policy optimization. In International Conference on Machine Learning, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP solvers.

Journal on Autonomous Agents and Multiagent Systems, 27(1):1–51, 2013.

David Silver and Joel Veness. Monte-carlo planning in large POMDPs. In Advances in Neural

Information Processing Systems, 2010.

96

Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual policy learning.

arXiv preprint arXiv:1812.06298, 2018.

Jonas Sjöberg, Qinghua Zhang, Lennart Ljung, Albert Benveniste, Bernard Delyon, Pierre-

Yves Glorennec, H̊akan Hjalmarsson, and Anatoli Juditsky. Nonlinear black-box modeling

in system identification: a unified overview. Automatica, 31(12):1691–1724, 1995.

Trey Smith and Reid Simmons. Heuristic search value iteration for pomdps. In Proceedings

of the 20th conference on Uncertainty in artificial intelligence, pp. 520–527. AUAI Press,

2004.

Trey Smith and Reid Simmons. Point-based pomdp algorithms: Improved analysis and

implementation. In UAI, 2005.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs.

Advances in neural information processing systems, 18:1257, 2006.

Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. Despot: Online pomdp planning

with regularization. In Advances in Neural Information Processing Systems, 2013.

Edward J Sondik. The optimal control of partially observable markov processes over the

infinite horizon: Discounted costs. Operations research, 26(2):282–304, 1978.

Matthijs TJ Spaan and Nikos Vlassis. Perseus: Randomized point-based value iteration for

POMDPs. Journal of Artificial Intelligence Research, 24:195–220, 2005.

Siddhartha S. Srinivasa, Patrick Lancaster, Johan Michalove, Matt Schmittle, Colin Summers,

Matthew Rockett, Joshua R. Smith, Sanjiban Chouhury, Christoforos Mavrogiannis, and

Fereshteh Sadeghi. MuSHR: A low-cost, open-source robotic racecar for education and

research. CoRR, abs/1908.08031, 2019.

Bradly C. Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel,

97

and Ilya Sutskever. Some considerations on learning to explore via meta-reinforcement

learning. arXiv preprint arXiv:1803.01118, 2018.

Anton A Stoorvogel. The h-infinity control problem: A state space approach. 1993.

Alexander L Strehl and Michael L Littman. Online linear regression and its application

to model-based reinforcement learning. In Advances in Neural Information Processing

Systems, 2008.

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. Pac

model-free reinforcement learning. In International Conference on Machine Learning, 2006.

Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in finite

mdps: Pac analysis. Journal of Machine Learning Research, 10(Nov):2413–2444, 2009.

Malcolm Strens. A Bayesian framework for reinforcement learning. In International Conference

on Machine Learning, 2000.

Zachary Sunberg and Mykel Kochenderfer. Online algorithms for POMDPs with continuous

state, action, and observation spaces. In International Conference on Automated Planning

and Scheduling, 2018.

Zachary Sunberg and Mykel J. Kochenderfer. Online algorithms for pomdps with continuous

state, action, and observation spaces. preprint arXiv:1709.06196, 2017.

Jie Tan, Zhaoming Xie, Byron Boots, and C Karen Liu. Simulation-based design of dynamic

controllers for humanoid balancing. In Intelligent Robots and Systems (IROS), 2016

IEEE/RSJ International Conference on, pp. 2729–2736. IEEE, 2016.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.

Domain randomization for transferring deep neural networks from simulation to the real

world. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017.

98

Emanuel Todorov. Convex and analytically-invertible dynamics with contacts and constraints:

Theory and implementation in mujoco. In Robotics and Automation (ICRA), 2014 IEEE

International Conference on, pp. 6054–6061. IEEE, 2014.

Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-optimal feed-

back control of constrained nonlinear stochastic systems. In American Control Conference,

2005. Proceedings of the 2005, pp. 300–306. IEEE, 2005.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based

control. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

Jur van den Berg. Extended lqr: Locally-optimal feedback control for systems with non-linear

dynamics and non-quadratic cost. In Robotics Research, pp. 39–56. Springer, 2016.

Jur van den Berg, Sachin Patil, and Ron Alterovitz. Motion planning under uncertainty

using iterative local optimization in belief space. The International Journal of Robotics

Research, 31(11):1263–1278, 2012.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double

q-learning. In AAAI Conference on Artificial Intelligence, 2016.

Jack M Wang, David J Fleet, and Aaron Hertzmann. Optimizing walking controllers for

uncertain inputs and environments. In ACM Transactions on Graphics (TOG), volume 29,

pp. 73. ACM, 2010.

Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans. Bayesian sparse sampling

for on-line reward optimization. In International Conference on Machine Learning, 2005.

Yi Wang, Kok Sung Won, David Hsu, and Wee Sun Lee. Monte Carlo Bayesian reinforcement

learning. In International Conference on Machine Learning, 2012.

Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement

learning. In Conference on Uncertainty in Artificial Intelligence, 2001.

99

Akihiko Yamaguchi and Christopher G Atkeson. Differential dynamic programming with

temporally decomposed dynamics. In Humanoid Robots (Humanoids), 2015 IEEE-RAS

15th International Conference on, pp. 696–703. IEEE, 2015.

Akihiko Yamaguchi and Christopher G Atkeson. Neural networks and differential dynamic

programming for reinforcement learning problems. In Robotics and Automation (ICRA),

2016 IEEE International Conference on, pp. 5434–5441. IEEE, 2016.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.

Bayesian model-agnostic meta-learning. In Advances in Neural Information Processing

Systems, pp. 7332–7342, 2018.

Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. Preparing for the unknown: Learning a

universal policy with online system identification. In Robotics: Science and Systems, 2017.

Juan Cristóbal Zagal, Javier Ruiz-del Solar, and Paul Vallejos. Back to reality: Crossing the

reality gap in evolutionary robotics. In IAV 2004 the 5th IFAC Symposium on Intelligent

Autonomous Vehicles, Lisbon, Portugal, 2004.

Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning deep control

policies for autonomous aerial vehicles with mpc-guided policy search. In Robotics and

Automation (ICRA), 2016 IEEE International Conference on, pp. 528–535. IEEE, 2016.

	List of Figures
	List of Tables
	Introduction
	Contributions

	Related Work
	Overview
	Optimal Control
	Belief-Space Reinforcement Learning
	Robust (Adversarial) Reinforcement Learning
	Adaptive Policy Methods
	Residual Learning
	Bayesian Meta-reinforcement Learning
	Bayesian Reinforcement Learning and Posterior Sampling

	GP-Iterative Linear Quadratic Control
	Introduction
	Approach
	Experimental Results
	Discussion

	Bayesian Policy Optimization
	Introduction
	Preliminaries: Bayesian Reinforcement Learning
	Bayesian Policy Optimization
	Experimental Results
	Discussion

	Bayesian CPACE
	Introduction
	BCPACE: Continuous PAC Optimal Exploration in Belief Space
	Experimental Results
	Discussion

	Bayesian Residual Q-Learning
	Introduction
	Bayesian Residual Q-Learning
	Experimental Results
	Discussion

	Bayesian Residual Policy Optimization
	Introduction
	Bayesian Residual Policy Optimization (BRPO)
	Experimental Results
	Discussion

	Conclusion

