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Abstract. Household manipulation presents a challenge to robots be-
cause it requires perceiving a variety of objects, planning multi-step mo-
tions, and recovering from failure. This paper presents practical tech-
niques that improve performance in these areas by considering the com-
plete system in the context of this specific domain. We validate these
techniques on a table-clearing task that involves loading objects into a
tray and transporting it. The results show that these techniques improve
success rate and task completion time by incorporating expected real-
world performance into the system design.
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1 Introduction

Our goal is to make robots that are capable of helping out around the house. We
have previously demonstrated our robot HERB’s capability to perform complex
manipulation tasks, like loading a dishwasher [1], fetching drinks [2], and stocking
a bookshelf [3]. However, a key criticism of our own work has been its lack of
reliability in planning and execution. This is especially exacerbated in multi-step
tasks, where the interplay between various steps, each of which are somewhat
reliable, can prevent the robot from even finding a complete feasible path let
alone executing it.

In order to enable the robot to more reliably plan these sorts of tasks, our first
contribution is a multi-step planning system that ensures that the robot does
not make poor decisions early on that prevent future steps from succeeding.
This system uses simple heuristics to backtrack and work around problems.
Furthermore, we present a simple extension to patch around errors detected at
execution time.
⋆ This work was sponsored in part by the Toyota Motor Corporation.
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Fig. 1: Summary of the major components of the system.

While adding multi-step and recovery capabilities increases reliability, the
system’s extensive introspection produces excruciatingly slow plans. Several ac-
tions may have to be explored to produce a plan. In this way, reliability and
speed are inexorably linked. In order to increase speed, and thereby enable
more complicated tasks, our second contribution is a set of optimizations of
the system. These include decomposing multi-step planning, motion planning,
and post-processing, and sequencing multiple motion planners.

Inspired by recent work in benchmarking randomized motion planners [4],
we ground our design decisions in the empirical performance of HERB doing
a specific task: clearing a table. By doing so, we can expose the interaction of
different components for a complete system in addition to testing each part indi-
vidually. We show several examples of the importance of this system-level design,
including the surprising result that in some cases the planner that is fastest on
a given planning call may not lead to the fastest overall task completion.

Each component of our open-source1 software system unifies contributions
from existing work. The planning system employs multi-step planning algor-
ithms [5,6] to decompose a task into individual components quickly and reliably
solved by sequential calls to multiple planners [7]. We separate post-processing
from motion planning [8,9] to speed planning time by only post-processing plans
that will be executed. The perception system combines several existing algor-
ithms [10–13], and decomposes the world into modeled objects and un-modeled
clutter [14] while using physical constraints to refine object pose estimates [15].
We use perception to detect failure [16] and recover by locally modifying an
existing solution [17].

2 Technical Approach

The software system summarized in Fig. 1 allows HERB to solve multi-step
manipulation tasks. Prior experience with the general task and motion planning
problem [5] reveals it is often difficult to specify the pre- and post-conditions
necessary to elicit the desired behavior from a task planner. Instead, we require
a user to specify a high-level task strategy and the system focuses on finding a

1 https://www.personalrobotics.ri.cmu.edu/software

https://www.personalrobotics.ri.cmu.edu/software
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Fig. 2: The (a) table-clearing task requires HERB to load a (b) plate, bowl and glass,
(c) into a tray, and (d) lift the tray for transport. This task requires different types of
motion planners, and the order of transporting the objects is encoded as branches in
the graph that may be explored by the multi-step planner.

geometrically feasible instantiation of the task. We use a table-clearing task as
a running example throughout this paper, where the robot must load objects
from a table onto a tray, then pick up and carry the tray away (Fig. 2).

The user specifies the task as a directed acyclic graph of actions. Each action
has parameters that determine its feasibility. We encode high-level decisions, such
as which object to move first, as special parallel actions that choose between a
set of possibilities. The table-clearing task with three objects has 140 individual
actions in the action graph (of which any complete solution path will consist
of 40 actions) and, at its widest point, six parallel branches (Fig. 2a). A multi-
step planner [18] uses a repertoire of geometric motion planners to search for
a feasible sequence of action parameters. The resulting solution is then post-
processed to improve its quality before execution. Perception is used both to
setup the initial scene and also monitor execution in order to recover from errors
by locally altering the solution.

Collision Detection. A key operation for motion planning or post-processing is to
check if a given configuration is in collision either with itself or the environment.
Testing configurations for collision can comprise a significant fraction of the
planning time for complex manipulation tasks. Identifying and optimizing an
efficient collision detector is therefore crucial for solving the task quickly.

There are many algorithm implementations that can solve the collision de-
tection problem. Here, we consider three: Open Dynamics Engine (ODE), a rigid
body dynamics libray with integrated collision detection [19]; Proximity Query
Package (PQP), a triangle mesh distance computation and collision detection
library [20]; and Flexible Collision Library (FCL), a library for fast and accurate
collision detection based on hierarchical representations [21].
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In addition to the algorithm chosen, it is important to carefully consider how
the algorithms are invoked. We implement two main optimizations. First, an
active-only optimization restricts collision checks to only links of the robot af-
fected by active degrees of freedom. All links of the robot that remain stationary
(e.g. the left arm in Fig. 2c), may be checked just once prior to the action.

The second optimization performs a pre-allocation step to speed up collision
checking of the repeated queries over identical link pairs characteristic of common
motion planners. Consider the set of checks needed at each configuration as an
undirected graph, with each vertex a link, and each edge a collision check. This
optimization partitions the vertices (links) into sets with the same neighbors,
and then pre-allocates the data structures for each pair of adjacent sets. This
automatically coalesces rigidly attached objects in the scene (e.g. objects grabbed
by the hand, or the table and robot base), and may thereby allow the underlying
collision library to make better use of internal hierarchical scene decompositions.

Motion Planning. The most expensive operation in multi-step planning is solv-
ing the motion planning problems necessary to evaluate geometric feasibility
of actions. Heuristic algorithms, such as connecting a start and goal with a
straight line in configuration space or simulating the execution of a Jacobian
psuedo-inverse controller, provide fast and efficient methods of finding solutions.
However, they are prone to failure in cluttered environments, as is often the case
in manipulation tasks. Trajectory optimizers [22, 23] solve more problems than
these heuristic methods but can get stuck in local minima and fail in complex
environments. Randomized motions planners [24, 25] most reliably solve diffi-
cult motion planning problems, but are often slower and produce poor-quality
trajectories that are time-consuming to execute.

The key insight is that running all of these motion planners in a sequence
allows us to quickly solve the easy problem instances without sacrificing the abil-
ity to solve difficult ones. The composition of this sequence is designed based on
the overall system performance and not just the performance of the individual
planners. A further simplification to the motion planning problems is to exploit
kinematic redundancy and symmetries by specifying a continuous goal set repre-
sented as a Task Space Region (TSR), instead of a single goal configuration [26].
In particular, this is useful when planning grasps for objects, as often several
valid grasps exist. The abundance of goals means that trivial solutions often
exist [27] and can be found by faster planning methods early in the sequence.

Multi-Step Planning. The multi-step planner recursively searches the graph at-
tempting to instantiate each action. The key challenge of multi-step planning is
coping with dependencies between actions in the task, e.g. HERB cannot grasp
a tray if he previously placed a glass near its handle. When this occurs, the
planner must backtrack and choose a different parameter for the node associated
with its placement of the glass. This is in contrast to a hardcoded strategy that
fixes the task sequence and does not try to backtrack.

We introduce four heuristics for backtracking. DFS performs a depth-first
search on the action graph, trying each action up to n times with different pa-
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rameters before backtracking to the action’s parent in the task’s graph. Restart
backtracks to the root of the graph upon encountering any failure. Parallel-
Restart backtracks to the previous parallel-node instead of the overall root.
Frustration lies somewhere in between these approaches by performing some
local search, unlike Restart, while leveraging state to restrict the number of eval-
uations. It does this by recording the number of failures for a given node and
backtracking faster when this value is large. For both DFS and Frustration, an
action is only retried if its previous solution is deemed non-deterministic, i.e.
re-planning the action will explore different parameters.

Post-Processing and Execution.Geometric motion planners typically return piece-
wise linear paths in configuration space. These paths are geometrically feasible,
but lack timing information and may be of low quality. Before execution, a path
is converted to a timed trajectory that satisfies HERB’s dynamical constraints [8]
and is locally optimized to reduce its duration [28]. To preserve geometric fea-
sibility throughout this step, each modification is collision checked against the
robot and the environment before accepting it. Consequently, post-processing is
a computationally expensive operation.

However, there are two facts that can help mitigate this cost: many paths
planned by the multi-step planner will never be executed and there is no inter-
dependence between the post-processing of separate paths. As such, we consider
three post-processing strategies. The first, immediate, runs post-processing just
after planning each action. The second, deferred, delays post processing until af-
ter the full task plan has been finalized. By deferring post-processing, this strat-
egy avoids post-processing plans generated for actions that are not included in
the final task plan. The third strategy, pipelined, delegates post-processing and
execution to separate threads. Here, once post-processing on a path is completed,
it is sent to a parallel thread to be executed.

Finally, we introduce a fourth post-processing and execution strategy, fully
parallel, that is like pipelined but also runs in parallel to the planning. To do
this the action graph must be modified to identify a set of actions in the graph
as checkpoints. These are actions that prevent the multi-step planner from back-
tracking further up the action graph. As soon as the multi-step planner finds
geometrically feasible parameters for a checkpoint, the system can begin post-
processing and executing all actions leading up to this checkpoint. This allows the
robot to begin executing before planning is complete. Note that these checkpoints
are incompatible with the Restart multi-step strategy, as once the execution has
started the planner cannot change the first step.

Perception and Error Recovery. Planners only guarantee feasibility if perception
provides them with an accurate model of the environment. HERB uses a reper-
toire of techniques to detect relevant objects in the environment and estimate
their poses. We tailor the strategy to the specific properties of each object: fea-
ture matching for richly textured objects [11], template matching for textureless
objects [12], and visual fiducials [10] for objects with challenging shapes or ma-
terial properties. To avoid collision with objects not detected by these systems,
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collision is checked against a mesh constructed from point cloud data [13]. Fi-
nally, the perception system creates a coherent model of the environment by
enforcing non-interpenetration and stability constraints.

We also use perception to monitor execution. We annotate critical actions
with validators that check for critical changes in the environment, i.e. an object
to be grasped has been knocked over. When an action is deemed infeasible, the
system will attempt to recover by locally altering the solution. For example,
the system can replace the current plan with a new trajectory to reach a goal
configuration if the previously planned trajectory is no longer collision free. If all
attempts at local alteration fail, there is no choice but to invoke the multi-step
planner again to generate a new solution.

3 Experiments and Insights

Our goal is to ground the design decisions in their ability to improve success
rate and completion time for the table-clearing task described in Section 2. The
experiments in this section use data recorded from execution of this task (Fig. 2a)
to evaluate the efficacy of each component shown in Fig. 1.

Collision Detection. We collected a dataset of 259,135 collision checks from five
executions of the task. Each collision check can be divided into two components:
a self check that verifies that the robot has no links colliding with each other
and an environment check that verifies that no links of the robot collides with
another object. Fig. 3 shows the mean time of a collision check—as well as the
breakdown of a check into these two components—for ODE, PQP, and FCL.

Our results show that FCL outperforms ODE and PQP by a factor of 6×. The
active-only optimization, which culls a large number of redundant collision checks
for the predominantly single-arm queries found in this task, yields an aggregate
speedup of 17–77% across the algorithms (from FCL-PA to PQP, respectively).
The pre-allocation optimization (FCL-PA) achieves a further speedup of 4.5×.

Fig. 3 highlights that the choice of collision checker has a large impact on
computation time: the difference between ODE and FCL-PA is 27×. This per-
formance is possible because the active DOFs and pre-allocation optimizations
leverage the structure of collision checks performed during manipulation plan-
ning.

Motion Planning. As with collision detection, we record all the motion planning
queries encountered across several runs of the table-clearing task and use those
queries to benchmark a repertoire of motion planners. We extract the two most
common queries, highlighted in Fig. 2a, for analysis.

End-effector offset queries plan a straight-line motion of the end-effector in
the workspace. We consider the following constrained motion planners:

1. Vector Field (VF) numerically integrates a Jacobian pseudo-inverse con-
troller that follows a vector field defined by the end-effector pose constraint.

2. Greedy IK (GIK) generates a workspace path, computes dense inverse-kine-
matics solutions, and interpolates between them in configuration space.
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Fig. 3: The timing performance for the ODE, PQP, FCL, and FCL-PA on 259,135
collision checks recorded from the table-clearing task. Each pair of bars shows the effect
of checking all links and only those moved by the active DOFs. Each
stacked bar shows the time required for the environment and self-collision
check. No such distinction exists for FCL-PA.

3. CBiRRT is a constrained bi-directional rapidly-exploring random tree [29].

TSR goal region queries plan an unconstrained trajectory to a continuous
goal region specified by a TSR [26]. We consider the following planners and, when
necessary, sample inverse-kinematic solutions from the TSR for initialization:

4. Snap returns the straight line in configuration space to a goal configuration.
5. Trajopt (TO) is a trajectory optimizer intended for motion planning [23].
6. RRT-Connect (RRT) is an unconstrained bi-RRT [30] in OMPL [31].

Fig. 4 shows the performance and Table 1 shows the relative success rate
of these motion planners. As mentioned in Section 2, our insight is that run-
ning multiple planners in sequence will allow us to solve more problems than
committing to any one algorithm. For end-effector offset queries, Vector Field
is the fastest but does not achieve the highest success rate. Combining Vector
Field and CBiRRT in a sequence (labeled as Comb.) is faster and more likely to
succeed than any individual planner.

In contrast, TSR goal region queries show that RRT-Connect is faster and
succeeds more often than all other planners2. However, trajectories returned
by RRT-Connect require additional post-processing, are slower to execute, and
introduce non-determinism into the action graph. We quantify the impact of
these factors in the post-processing section by comparing RRT-Connect against
a sequence that calls Snap, then Trajopt, then RRT-Connect (labeled as Comb.).

Multi-Step Planning. The multi-step planning results of running the table clear-
ing task with the backtracking strategies introduced in Section 2 are shown in
Fig. 5a. All of the backtracking strategies show significant improvement in suc-
cess rate over the hardcoded task sequence. Surprisingly, the fastest backtracking

2 Note, however, that these order critically depend on collision checking speed.
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Fig. 4: Success rate as a function of planning time for (a) end-effector offset, where the
combined planner is both fast and highly successful, and (b) TSR goal region, where
RRT-Connect does best. However, see Fig. 5b for total task time results.

VF GIK CBiRRT Comb.

VF 83.8 2.7 8.2 8.2
GIK 6.5 79.9 9.6 12.0
CBiRRT 2.5 0.0 89.5 2.5
– – – – –
Comb. 0.0 0.0 0.0 91.9

(a) End Effector Offset

Snap TO RRT CBiRRT Comb.

Snap 53.7 43.6 44.5 46.1 46.0
TO 2.2 95.1 4.6 4.7 4.6
RRT 1.5 3.1 96.6 3.2 3.1
CBiRRT 0.0 0.0 0.1 99.7 0.1
Comb. 0.1 0.2 0.2 0.2 99.6

(b) TSR Goal Region

Table 1: Success rate, in percent, of (a) end-effector offset and (b) TSR goal region
planning queries using the planners described in the text. The main diagonal shows
the success percent of each planner. An off-diagonal entry (i, j) shows the probability
of planner j succeeding given that planner i has failed.

strategies are Restart and Parallel Restart. These strategies can suffer from a
much more significant waste of planning time compared to the others because
all progress in the search is discarded on each restart. However, in this task,
the good performance of the Restart strategies can be attributed to two factors.
First, the significant improvements in speed and success rate in collision check-
ing and motion planning reduce the penalty of throwing away many planning
calls. Second, many of the individual motion planning failures occur on difficult
or impossible problems, e.g. an early choice for bowl placement in the tray pre-
vents grasping the handle near the end of the task. The other strategies must
backup many steps and replan large portions of the task to find a feasible solu-
tion. The DFS and Frustration strategies assume backtracking a small number
of steps and selecting different parameters will lead to success, making them less
suitable for the types of failures experienced in this task.

Post-Processing. Fig. 5b shows that deferring post-processing until multi-step
planning is complete reduces total task completion time by 7 seconds by only
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Fig. 5: (a) Success rate as a function of time for multi-step planning. All backtrack-
ing strategies outperform a Hardcoded solution, with Restart performing best.
(b) Amount of time spent during planning, post-processing, and exe-
cution. Deferred and Pipelined both reduce total time over Immediate. These results
also show that RRT-Connect (left bars) is faster at planning, but Sequence (right
bars) achieves lower total time by returning higher-quality solutions.

post-processing trajectories that are to be executed. Pipelining post-processing
with execution leads to a further reduction of 6 seconds.

Additionally, Fig. 5b shows that the reduced planning time of RRT-Connect
does not outweigh the cost of its lower-quality trajectories: the sequence includ-
ing Snap and Trajopt achieves a faster task completion time. We performed
this comparison after optimizing separate post-processing parameters for the
sequence and RRT-Connect on a training dataset.

Overall Results. We incorporate the results from the collision checking, plan-
ning, and post-processing evaluations to examine the effects of each of these
improvements on overall task success and planning time. We consider the fol-
lowing conditions:

(i) The first condition is a baseline that uses ODE on all links, a single planner
(CBiRRT, as the only planner capable of solving all types of planning calls),
a hardcoded task sequence, and immediate post-processing.

(ii) The next condition is the same but adds in the Restart multi-step planning.
(iii) Next the ODE collision checker is replaced with the best performing collision

checking strategy, FCL-PA with active-only.
(iv) The next condition uses the fastest planning sequence for each type (Vector-

Field and CBiRRT for End Effector Offset and RRT-Connect for TSR Goal
Region) as well as pipelined post-processing.

(v) In this condition we consider changing the previous to use a sequence of
Snap, Trajopt, and RRT-Connect for TSR Goal Region.

(vi) Finally, we modify the previous system to use the fully parallel post-processing
and execution (i.e. starting execution in parallel with planning), and change
to the Parallel-Restart multi-step strategy.
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Fig. 6: (a) Overall impact of the optimizations on planning, post-processing, and execu-
tion time. Conditions range from (i) baseline to (v) fully-optimized system. See
the text for a detailed description of the conditions. (b) Recovery planning time with
one, two, and three objects to transport. Unlike the näıve re-planning, patching
is a local operation that does not take longer as the task becomes longer.

The distribution of complete trial times for these settings is shown in Fig. 6a.
As expected from the individual component experiments in this section, the
use of a multi-step planner improves success rate, as can be seen by comparing
conditions (i) and (ii). The faster collision detection produces a dramatic speedup
between (ii) and (iii). Using the optimal planning and post-processing strategy
provides a further improvement to (v).

While the individual planner tests indicated that RRT-Connect is the fastest
for TSR Goal Region plans, condition (iv) is actually slower than (v) due mostly
to the increase in execution time that results from this randomized planner.

Finally, parallelization of planning and execution does speed up the total
trial time from (v) to (vi), however the final success rate is reduced because the
multi-step planner cannot backtrack once execution of an action has begun.

Error Detection and Recovery. We introduce failures into the experiments to
measure the efficacy of the error recovery strategy. In order to patch to an exist-
ing solution the system must be able to plan to preconditions of a solution, which
requires integrated task-and-motion planning. Here, we have selected simple pre-
conditions that the system can plan to, e.g. matching the pose of the existing
solution after moving an object. We compare this with a näıve recovery planner
which re-plans the entire remaining task. Results shown in Fig. 6b suggest that
a patch strategy is faster than a näıve strategy, whose planning time increases
as the remaining number of objects increases. Since the patch strategy makes
local solutions, it does not take longer even on more complex tasks.
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4 Conclusion

The system design presented here is an empirically motivated software system for
mobile manipulators performing complex tasks. This is a stepping stone between
hard-coded sequences of actions and fully autonomous task and motion planning.

One key to the design of this system was taking an integrated view of all of
the components. For example, the best performing motion planner for TSR Goal
Regions (RRT-Connect) actually resulted in slower overall performance as the
plans it produced required more time to post-process and execute. By iteratively
improving and testing each component, we are able to identify the algorithms
that best work together to solve the full task.

The strategies identified as best for table-clearing may not generalize across
all problems. For many components, we could generate problems that reach very
different conclusions. It is challenging to identify a universally optimal design, as
the field lacks an operational notion of the space of all problems. Therefore, it is
important to ground the design in a real example or a set of real examples. Actual
performance on a problem is often just as important as theoretical bounds.

Our system requires the user to design an action graph that provides the
multi-step planner the flexibility to explore multiple different solutions. This
places the burden on the user to design a detailed and effective graph. In the
future we plan to gradually reduce the granularity of the input action graph,
instead allowing the user to specify higher-level goals and empowering the multi-
step planner to expand these to sufficient action graphs.
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