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Abstract—Manipulation planning involves planning the
combined motion of objects in the environment as well as the
robot motions to achieve them. In this paper, we explore a
hierarchical approach to planning sequences of non-prehensile
and prehensile actions. We subdivide the planning problem into
three stages (object contacts, object poses and robot contacts)
and thereby reduce the size of search space that is explored. We
show that this approach is more efficient than earlier strategies
that search in the combined robot-object configuration space
directly.

I. INTRODUCTION

Humans exploit both prehensile and non-prehensile ma-
nipulation when working with objects. For a small, light
object, such as a cup, a simple grasp operation often suffices.
For a large, heavy object, such as a piece of furniture, non-
prehensile manipulation, such as pushing, may achieve the
desired result. In other cases, it may be necessary to combine
prehensile and multiple non-prehensile operations, including
pushing, tilting, tumbling, etc., to achieve a desired result.

Manipulation planning involves planning the combined
motion of objects in the environment as well as the robot
motions to achieve them. We would like to be able to plan
prehensile and non-prehensile manipulation in an integrated
fashion. Ideally, a planner could pick from among a large
repertoire of diverse action types to achieve a desired state
in the most reliable and efficient manner. However, although
great progress has been made in planning motions in the
robot’s configuration space in the presence of obstacles,
progress in general manipulation planning has been more
limited.

While the state of the world and robot can be represented
in a single combined configuration space, the manipulation
planning problem has a number of complicating factors. The
dimensionality of the combined space may be very large,
and the domain is severely under-actuated: the robot can
only affect the state of objects when it is contact with them
and the interactions are mediated by possibly complicated
dynamics constraints. As a result, there are few planners
that address the problem of combining prehensile and non-
prehensile manipulation. Some exceptions are the work of
Hauser and Latombe [1], Dogar and Srinivasa [2], Barry
et al. [3] and King et al. [4], but they have mostly focused
on pushing.
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Manipulation planning is a form of multi-modal plan-
ning [1, 3]; that is, it is planning in a hybrid space, in
which the modes represent sub-manifolds where different
motion constraints, such as contact with a particular object
face, hold. The presence of these constraints mean that the
classic sample-based algorithms for robot motion planning
do not apply directly, since samples need to be generated at
the lower-dimensional mode transitions. Extensions to this
style of algorithm to multi-modal planning exist; however,
when the modes form continuous families (which is the
case in manipulation), planning in such multi-modal spaces
generally requires some form of hierarchical planning for
search guidance. For example, planning for the manipulated
object ignoring the robot (and possibly obstacles) and then
using the abstract plan to guide search for a full plan for
the robot [3], or decomposing push operation into pre- and
post-contact, using an A* search for pre-contact trajectory
and then using pre-computed post-contact policy [5].

In this paper, we explore a hierarchical approach to
planning sequences of non-prehensile and prehensile actions.
This hierarchical approach is more efficient than earlier
strategies that search in the combined robot-object config-
uration space directly. We illustrate the approach through
an initial implementation that manipulates a single convex
planar object among planar obstacles using point contacts
with friction; we leave robot shape, robot kinematics and
grasp stability considerations for future work.

II. APPROACH

Our planner operates hierarchically, first finding a se-
quence of qualitative “object contact states” that characterize
which parts of the moving object are in contact with which
parts of other objects, then finding a feasible sequence of
poses for the object, and finally finding a sequence of contact
points for the manipulators on the object. This hierarchical
structure provides significant search guidance, and divides
the problem into three search problems that are much smaller
than a search in the full combined configuration space of the
object and manipulators.

The formulation of the first two search problems builds
on existing work on contact-state graphs [6, 7]. We start by
constructing a graph that represents the contacts between the
moving object and other fixed objects in the world, not yet
worrying about the exact pose of the object or the robot. A
contact-state path provides a useful constraint for the actual
path of the object. Figure 1 shows a contact-state graph of an
object moving on a table, containing sample object poses in
each contact state. To move the object from posei to posej
without lifting it, we can first find a path from contact
statek to contact statem and then find a pose sequence



Fig. 1: A contact state graph with poses connected through
linear interpolation. Poses connecting two contact states are
very close to each other.

within the contact-state path. Finally, we search for a robot-
contact plan, which is a sequence of robot contacts and
forces on the object, which will cause the object’s motion
to comply to the pose path found in the previous phase.

To find a robot-contact plan, we begin by discretizing
the object’s surface into a set of possible contact points
and define a state to contain an object pose and a set
of contacts of the robot’s manipulators on the object. We
then identify states that are feasible: both geometrically
accessible, meaning that the robot can reach all of the
specified contacts, and stabilizable, meaning that there exists
a set of contact forces between the object and the robot’s
manipulators, as well as the fixed objects, that can stabilize
the object against gravity. Throughout this paper we will
focus on the case of two point-manipulators with hard
contacts. For example, if the object is at pose p = (0, 0, π/6)
and one manipulator is on c1, as shown in figure 2, the
manipulator can passively support the object. The range
of feasible locations of c1 depends on the angle and the
coefficient of friction. For a particular object pose p, we
can evaluate all combinations of c1, and c2 to find feasible
robot-contact states. Any geometrically valid pose p can be
associated with a space of discretely sampled robot contact
pairs. The left part of figure 2 shows such a space.

The decomposition of robot motions into transit and
transfer motions [8] can be viewed as transitions within and
across robot-contact spaces. A transit, changing the manipu-
lator contacts with the object in a fixed pose, is a transition
between two feasible states within the same robot-contact
space. For example, in figure 2, (p, c1, c2), (p, c1,none),
and (p, c1, c3) are all feasible, and the manipulator can
transit from (p, c1, c2) through (p, c1,none) to (p, c1, c3) by
moving hand2 from c2 to c3. In the robot contact space,
this is a vertical transition among three states that share c1.
A transfer, changing the object pose while maintaining the
manipulator contacts, is a transition between (p1, c1, c2) and
(p2, c1, c2), where p1 and p2 are neighboring poses in an
object-pose path. This is a transition from a state in p1’s
robot contact space to the corresponding state in p2’s robot
contact space, as shown in figure 3. For a transfer to be valid,
it must also be possible for the manipulator to induce the
wrench necessary to move the object in the desired direction.

Figure 4 illustrates the connected search spaces: within
the discrete contact states in the contact-state graph, there are
individual object poses, and a path through object-contact
space can be realized by a path through object pose space.

Fig. 2: Robot contact space for p = (0, 0, π/6). Each axis
represents possible contact points along the object’s surface
accessible by hand1 and hand2. The leftmost column and
the bottom row represent no-contact for hand1 and hand2,
respectively. Green cells represent feasible states in which
the object can be balanced by one hand. If one hand is
sufficient to stabilize the object, the other hand can place
itself on any geometrically accessible surface; these states
are colored in red. For example, if a row’s leftmost cell
is green, all geometrically accessible cells in the same row
are red. States that require both hands are colored in blue.
Grey cells represent states with geometrically inaccessible
contacts; white cells represent those that are not stabilizable.
A transit is a transition from a red state to another red state
in the same row or column. The figure shows transits from
(c1, c2) to (c1, none) and then to (c1, c3).

Fig. 3: Transfer from (p1, c1, c3) to (p2, c1, c3).

Then, for each object pose, there is a set of robot contacts,
and a path through object pose space can be realized by a
path of transit and transfer motions through the combined
space of robot contacts and object poses.

Figure 5 illustrates the hierarchical search process. At
the bottom is a path in contact space; above that is a
realization of it in object pose space, and at the top is
a realization of that path in the combined robot-contact
and object-pose space. Because we are reducing the search
space at each step, we also reduce the set of feasible
paths at each step. Hence, if we fail to find a path in
the final search, we backtrack to find different solutions in
the previous searches. Despite the possibility of having to

Fig. 4: The relationship between the spaces of object con-
tacts, object poses, and robot contacts.



Fig. 5: Object-contact state path, object-pose path, and robot-
contact path aligned together.

Fig. 6: A combination of prehensile and non-prehensile
manipulation. In this example, the coefficient of friction
between the box and the environment is small relative to the
coefficient of friction between the box and the manipulator,
which allows the manipulator to apply enough force in
the tangential direction to move the box horizontally. The
manipulator drags the box out of a shelf, reorients it to a
graspable pose, and then moves the box to another table by
lifting it.

repeat these steps multiple times, we find empirically that
this hierarchical approach is much faster than performing a
single search in the combined space directly.

Our planner can be extended to enable combinations of
prehensile and non-prehensile manipulation by adding extra
connections within the “free” contact state, in which the
object is not in contact with any of the fixed objects. For
any stable set of robot contacts, all collision-free transfers
(changes to the object pose), possibly subject to additional
constraints such as force closure, are allowed. This combi-
nation of manipulation strategies is very rich: for example,
we can move a box from a tight shelf to a detached table
by first pulling it out, reorienting it, and lifting and placing
it on the table, as shown in figure 6.

The main advantage of our approach is that the individual
search spaces are relatively small. In section V, we compare
our approach with a single search in the combined space and
show a major computational advantage.

III. RELATED WORK

There has been substantial research on planning in-
dividual non-prehensile manipulation operations, such as
pushing [9, 10] and toppling [11]. There has been less work
on planning sequences of non-prehensile operations. Early
work by Erdmann and Mason [12] considered planning a
sequence of “sensorless” tilting operations to place an object
at a desired final pose. Abell and Erdmann [13] developed
a planner for rotating a 2D polygon by maintaining two
contacts that can induce quasi-static rotations of the object.
Erdmann [14] later presented a non-prehensile two-palm
manipulation planner that reorients an object by calculating
angles in which the object is held in equilibrium and angles
in which the object would slide or rotate around a vertex. A
more recent work by Yamawaki and Yashima [15] presented

a two-phase, whole-arm manipulation planner for reorienting
planar polygonal objects.

The line of work most closely related to our own is
by Maeda and Arai; they have successfully demonstrated
non-prehensile manipulation planning with multiple robot
contacts across multiple contact states [16, 17]. Initially,
they assumed a planar environment and that the contact state
graph was given; they discretized the combined configura-
tion space of the object and the robot hands in each contact
state, connecting poses for transits and transfers. They
extended the approach to three dimensions and incrementally
generated poses for a single contact states. They performed
A* search in the combined object, robot configuration space,
in this case, limited to a single contact state. In both cases,
this approach resulted in a very large state space with many
possible transition edges. Since checking for geometric con-
straints and manipulation feasibility is expensive, it resulted
in large running times. More recently [18] they applied
an RRT-variant to perform the search which resulted in
some improvements in average running time but with high
variance. Their work has also pursued a careful assessment
of the stability of contacts, finding plans that are most stable
under this measure, an important issue that we have not
considered here.

In this paper, we integrate contact-state compliant
task-planning and force stability analysis to achieve non-
prehensile manipulation planning. Our planner considers
motions compliant to a sequence of contact states, as in Xiao
and Ji [6][7], to connect the initial and goal poses of the
object. Then, we identify manipulator contacts that can move
the object along a chosen path. To do this we apply the force
feasibility analysis introduced by Han et al. [19].

IV. ALGORITHMS

The top-level structure of our planner is as follows:

• Construct a sequence πoc of connected abstract
states representing contacts of the robot with the
other objects in the world.

• Construct a sequence πop of connected object poses
that moves through, while conforming to, the chosen
elements of πoc.

• Construct a sequence πrcop of the robot’s contacts
on the object, that will allow the robot to apply
wrenches that will move the object along the tra-
jectory specified by πop.

We then use a feedback controller to apply the robot contact
forces needed to execute πrcop to move the target object to
its goal pose.

Formally, we are given the following as input: a de-
scription of the convex polyhedral shape for a target object
to be moved; initial and goal object poses at which the
object is statically stable without any robot contacts; a
description of all other objects O1, . . . , Om in the world,
in the form of a union of convex polygons; a number n of
point contacts the robot can exert; coefficients of friction for
all contact surfaces; and a maximum amount of force that
can be applied by the robot. The following sections describe



Fig. 7: The left contact state is (Ok, ei, ej), and the right
contact state is (OB , vi, ej). Since ei contains vi, the
principal contact (Ok, vi, ej) is contained by (Ok, ei, ej),
and therefore the right contact state is a less-constrained
neighbor of the left contact state.

algorithms for solving each of the planning problems, given
the input.

A. Object-contact planner

An object-contact graph (OCG) is a connected set of
abstract states that are characterized by the contacts between
one target object and other objects in its environment.
Contact graphs have been suggested for planning compliant
motions [20, 21] and used by Maeda and Arai [16] for plan-
ning non-prehensile manipulation. Xiao and Ji [6] provide
algorithms for constructing an OCG given descriptions of
the objects’ shapes. We construct an OCG and use it to find
an abstract plan for moving the target object.

Each node in an OCG is a geometrically valid object-
contact state. We define an object-contact state for target
object T to be a set of principal contacts between T and
fixed objects O1, . . . Om. Each principal contact (PC) has the
form (Ok, φi, φj), where φi is a feature (edge, or vertex)
of T and φj is a feature of Ok. So, for example, if edge
ej of T makes contact with vertex vj of Ok, the principal
contact would be (Ok, ei, vj). An object-contact state is
geometrically valid if and only if there is at least one
collision-free pose that satisfies the geometric constraints
imposed by the state.

To define edges between object-contact states, we make
use of the following properties, defined by Xiao and Ji [6]
and illustrated in figure 7.

• A principal contact (Ok, φi, φj) contains principal
contact (Ok, φa, φb) if and only if (a) φa ∈ φi and
φb ∈ φj or (b) φa = φi and φb ∈ φj or (c) φa ∈ φi
and φb = φj .

• A contact state S1 contains contact state S2 if and
only if (a) |S1| ≥ |S2| and (b) for every PC z2 ∈ S2,
either it is in S1 or there is a unique PC z1 ∈ S1

such that z1 contains z2 and (c) no two PCs in S2

are contained by the same PC in S1.

• If S1 contains S2, we call S2 a less-constrained
neighbor of S2.

There is an undirected edge between two object-contact
states S1, S2 in the OCG if S1 is a less-constrained neighbor
of S2. Edges correspond to adding and removing principal
contacts, and to changing the nature of a principal contact
(for example, changing an edge contact to a vertex contact
on that edge).

The object-contact planner constructs an OCG and uses it
to find a connected path πoc. It takes as input contact states
S0 and Sg corresponding to the initial and goal poses of
the object. It also takes seeds, a set of user-provided contact
states representing the most constrained, geometrically valid
contact states. The result depends on the shapes and poses of
the permanent objects and the shape of the moving object.

The algorithm begins by constructing a sub-graph for
each seed, by recursively generating the set of object-contact
states that are less constrained than the seed, using the less-
constrained neighbor relationships. In the absence of user-
provided seeds, an additional pre-processing step to identify
them from the models is required.

Some object-contact states generated in this process may
be geometrically invalid, in which case we discard them.
Testing for geometric validity can be difficult: it is necessary
to construct a collision-free pose for the object that satisfies
the contact constraints. Therefore, this is an instance of a
geometrically constrained motion-planning problem that can
be addressed (approximately) with a sampling-based motion
planner [7]. In our implementation we use a hybrid ap-
proach. For states with single principal contact, we randomly
sample poses that satisfy the principal contact, and check
whether they are collision-free. For states with multiple
principal contacts, we formulate and solve an optimization
problem. We begin by constructing a plausible solution pose,
p0. For each principal contact zi in object-contact state S,
we find an arbitrary satisfying pose pi. Then we set p0 to
be the average of the pi. This pose is not likely to satisfy
either the contact or collision constraints. So, we formulate
the problem of finding p to minimize (p0 − p)T (p0 − p)
subject to the contact constraints in S and to the constraint of
not colliding with any of the fixed objects. The optimization
problem is non-convex, but in practice we have found that
a satisfying solution can be found, possibly with a few re-
starts using different values of p0. If we find such a pose,
then we consider S to be geometrically valid, otherwise, we
discard S.

Now, we have a set of graphs grown from the seeds. Gen-
erally, the graphs will have some contact states in common,
which will allow us to merge them into a single graph. If
not, we identify more seed states and repeat the process until
S0 is connected to Sg . Once S0 and Sg become connected in
the graph, we search using breadth-first search for the path
with the fewest transitions and return the resulting path, πoc,
through the OCG.

B. Object-pose planner

Given a qualitative plan for the object in terms of its
contacts with other objects, πoc, we search for a detailed plan
for the object motion, in the form of a sequence of poses,
πop, such that the continuous object trajectory resulting from
linear interpolation of these poses moves the object through
the contact states πoc.

Again, we treat the problem as one of constructing a
graph and then searching it for a path. The nodes in the
object pose graph (OPG) are object pose states, which
have the form (p, S), where p is an object configuration
(p = (x, y, θ) in the planar case), and S is an object-contact



Fig. 8: Once we connect poses within each contact state
(step 1), we connect poses across neighbor contact states.
We apply a small perturbation to each pose in the more-
constrained contact state. If this perturbation results in a
valid pose in the less-constrained contact state, we add the
pose to the graph and connect it with its original pose (step
2) as well as with other poses in the less-constrained contact
state (step 3).

state. It is relatively simple to compute S from p but it
is more efficient to represent it explicitly; we will only
consider nodes for which the object placed at p satisfies the
constraints in S and does not collide with the permanent
objects.

The object-pose planner constructs an OPG and uses it to
find a connected path πop. It takes as input the object-contact
state path πoc, the initial object pose p0 and the goal object
pose pg . It begins by generating sample states, (pji , Si), for
each of the Si in πoc, that satisfy contact constraints of
Si and are collision-free. (pji , Si), (pki , Si), are connected if
a linear interpolation between pji and pki that continuously
satisfies the non-collision constraint exists. The interpolation
algorithm is described by Ji and Xiao [7]. Next, for each
transition between object contact states, Si, Si+1 in πoc, and
for each sampled pose pji for Si we generate new poses
by applying small translations and rotations, as described
by Xiao and Ji [6]: If the resulting object pose, p′ satisfies
the conditions of object contact state Si+1, then we add
node (p′, Si+1) to the graph, connect it to the (pji , Si) from
which it was constructed, and attempt to linearly connect
(p′, Si+1) to other object-pose states in object-contact state
Si+1. Finally, we add nodes for the initial and final poses,
(p0, S0) and (pg, Sg), and connect them to directly reachable
nodes in the graph with matching S values. Now, we search
the graph to find a path πop through the object-pose graph
from the initial to the goal pose.

Note that in the construction of this pose graph, we
evaluate and connect poses only within a contact state and
across neighboring contact states. The number of evaluations
that must be performed for connecting poses is O(n2), where
n is the number of sampled poses per contact state. In
practice, the size of n can be very small relative to the total
number of sampled poses as the number of contact states
gets large.

C. Robot-contact planner

The last level of planning is to construct a sequence πrcop
of the robot’s contacts on the object, that will allow the robot

to apply wrenches that will move the object along the pose
trajectory specified by πop. Once again, we construct and
then search a graph.

Nodes The robot contact graph (RCG) has robot contact
states as nodes. A robot contact state (RCS) has the form
(p, S, C) where p is an object pose, S is an object contact
state and C is a vector of contacts, corresponding to contacts
the robot makes on the object. Each robot contact c is
either none or a point of contact between the robot and
the object. For a two-fingered robot and planar objects,
when both fingers are in contact and there is one object
contact, e.g. with the table, the entire state is described by:
((x, y, θ), {(O1, φ1i , φ

1
j ), . . . , (O

m, φmi , φ
m
j )}, (c1, c2)). The

contact points ci, can be represented as displacements along
the movable object’s surface, in our planar examples, it is
sufficient to represent a one-dimensional displacement from
a fixed vertex on the polygon. This can be mapped to x, y
coordinates as necessary.

An RCS is a legal node in an RCG if it is both geomet-
rically accessible and stabilizable. An RCS is geometrically
accessible if the robot contact points c1 and c2 are on a
surface of the movable object that is not in contact with
any other object. This is a very simplified condition that
should be extended to require the existence of a collision-
free path for a particular physical robot, as well. An RCS
is stabilizable if there exists a solution to its corresponding
force feasibility problem [19].

Consider an object (assumed not to be in motion) that
has contacts c1, . . . , cn, including robot contacts as well as
contacts with other objects (implied by the contact state S);
contact between two edges is approximated as two point
contacts at the two endpoints of the edge contact. We wish
to determine whether there is a combination of forces that
can be exerted by these contacts that will balance the force
of gravity.

Let f i = (f ix, f
i
y) be the force exerted at ci in the

coordinate frame defined by ci. For each contact ci, let Gi

be a transformation matrix that maps points in the contact’s
frame of reference to points in a frame of reference fixed at
the object’s center of mass. Let f be the vector (f1, . . . , fn)
of forces applied at each of the contacts. Then the total
wrench exerted on the object is

Gf = (G1, . . . , Gn)f

in the frame of the object. To maintain equilibrium, this
wrench must balance the wrench caused by gravity:

Gf +G′

[
0
−mg
0

]
= 0 (1)

where G′ is a transformation matrix that maps vectors in
a world coordinate frame to the object’s coordinate frame.
In addition, we also have the following frictional constraints
for each contact:

f iy ≥ 0

|f ix| ≤ µif
i
y (2)

where µi is the coefficient of friction for ci. If there is an
upper bound on the amount of force applied by the robot, we



add this constraint as well. Given the set of robot contacts
and contacts with other objects, it is possible to determine
whether there exists a set of forces at these contacts that can
balance the force of gravity. The exact distribution of forces
is statically indeterminate, but the minimum norm solution
(that minimizes fTf ) provides a reasonable prediction of
the actual force distribution [22]. Given the same set of
contacts, there may be other solutions that balances gravity,
but we always take the minimal net force solution. Hence,
each state is unique in the RCG.

Edges There are two qualitatively different types of transi-
tions between RCSs: transit and transfer. In a transit, the
object’s pose stays constant but the robot contacts change;
in a transfer, the robot’s contacts on the object stay constant
with respect to the object, and the object’s pose changes.

A transit between two legal RCSs (p, S, (c1, . . . , cn))
and (p, S, (d1, . . . , dn)) is an edge in the RCG if for every
contact i, at least one of the following conditions holds:
ci = di, ci = none or di = none . This means that the
object will be stable during the execution of an interpolated
path between those states.

For a transfer to be a legal edge, it is necessary but
not sufficient for the two end states to be stabilizable. For
example, a box on a table can be in equilibrium at two
distinct poses with no robot contact, but without any robot
contact, there is no single transfer between the two states.
In order for a pose change to be legal, there must be a
combination of contact forces that induces the necessary
motion. If the transfer involves a combined translation and
rotation, we break it into two steps, one pure translation and
one pure rotation. We also assume that a rotation always
pivots around a contact with the environment.

Algorithm The robot-contact planner constructs an RCG
and uses it to find a connected path πoprc. It takes as input
the object-pose state path πop, the number nc by which we
discretize the object surface, the initial RCS (p0, S0, C0) and
the goal RCS (pg, Sg, Cg). We assume that the object should
be statically stable at initial and goal poses, so both C0 and
Cg are (none, none).

We begin by constructing nodes in the graph. We dis-
cretize the object’s surface by nc to generate a set of possible
robot contact points C; also included in C is the element
none representing no contact. For each (pj , Sj) in πop, we
consider RCS (pj , Sj , (c

1, . . . , cn) for all c1, . . . , cn ∈ Cn.
Any of these RCSs that are geometrically inaccessible are
immediately discarded.

For each of the remaining candidate RCSs, we attempt
to find a set of forces f that make the state stabilizable.
We use the gravitational and friction constraints to form a
quadratic program that seeks to minimize total force (fTf ),
as in [22]. If a solution exists, with forces that can be exerted
by the robot, it is added to the graph.

Transit edges are added between any pair of RCSs that
differ only by adding or deleting contacts. For any transition
between OPSs (pi, Si), (pi+1, Si+1) in πop, we consider
transfer edges between (pi, Si, C) and (pi+1, Si+1, C), for
all C ∈ Cn. We must check to see whether the contacts
C can generate a wrench that would cause the necessary
rotation or translation.

To check whether the robot contacts can generate the
necessary wrench, we once again formulate a force feasi-
bility problem. First, we identify the contact mode change
for contacts with other objects during the motion. During
a transfer between (pi, Si, C) and (pi+1, Si+1, C), all robot
contacts remain in contact, but some of the contacts with
other objects may change their modes. Some of them may
be removed, and some of the contacts may become sliding
contacts, depending on the nature of the motion. If a contact
ck is removed during the transfer, we remove the relevant
terms from G and f . If ck becomes a sliding contact, we
modify its corresponding inequality constraints in equation
2 to an equality constraint that opposes the direction of the
motion.

Then, given the contacts and their contact modes,
we must check whether these contacts can generate a
wrench that cause the necessary rotation or translation.
Under the quasi-static assumption for planar objects, the
desired wrench direction can be approximated with the
desired motion direction of the object’s center of mass. Let
[δx δy δω]

T be the desired motion direction. In case of
translation, this can be found be taking the offset between
the two poses, with δω = 0. In case of rotation, this can be
found by identifying the center of rotation and finding the
motion direction of the center of mass, with δω indicating
the sign of rotation. Once we identify [δx δy δω]

T
, we

can modify equation 1 of the force feasibility problem to be
the following:

Gf = G′

([
0
mg
0

]
+ k

[
δx
δy
δω

])
(3)

with k being constrained to be positive. If there is a solution
to this problem, it implies that the contacts can generate
wrench in the direction of the object’s desired motion.

Once the graph has been constructed, we search it for
a path from the initial RCS to the goal. If there is no such
path, the overall search backtracks and tries to find paths at
the previous levels.

D. Plan execution system

Given the final plan πrcop, we use a simple closed-loop
controller to execute it on the robot.

During execution, we position-control the robot’s con-
tacts on the object. Some contacts require active application
of force while others passively support the object to resist
gravity. In order to move the object in the desired direction,
we need active “pushing” only when the robot contact’s
motion direction, determined by its force vector, is in the
same direction (within some predetermined range) as the
object’s motion direction.

At time t, the desired pose, contact point, and contact
forces, pt, ct1, f

t
1, c

t
2, f

t
2, are provided. If the desired motion

direction at a contact point is within π/2 of the force
direction, we move the robot contact, ri, in the direction
of the contact force, fi. If it is in the opposite direction, the
hand is slightly detached from the object to prevent applying
extra force. The motion direction for the robot manipulator
is defined by

drti = sign(dcti · f ti )δf ti



Fig. 9: Key frames from a sample solution trajectory for
tumbling one box over another. Red lines indicate the
force direction of the robot contact pushing the object. The
“hands” simply highlight the location of the chosen robot
contacts.

where dcti is the motion direction for the contact point and
δ is a small constant.

Transit motions with the robot not in contact with the
object are executed with pure position control.

If our goal were to track the designed trajectory very
precisely, we would need a more sophisticated controller.
However, since we only desire to move the object through
the sequence of object contact states to a final pose, this
simple approach suffices.

V. IMPLEMENTATION AND RESULTS

We have implemented a version of this planner for
planar objects and two robot contacts, without any further
kinematic or collision constraints introduced to model the
robot performing the manipulation. The implementation is
in Python, with collision-checking done by Box2D [23].
The geometric validity of poses is checked using MATLAB
libraries; this call to MATLAB is currently the bottleneck
in our implementation. The results were tested in simula-
tions that were constructed in Box2D. We compared the
performance of our approach to that of a “combined” planner
(similar in structure to those of Maeda et al. [16, 17]) that
follows an object contact-state path but plans for both and
robot contacts at the same time.

We tested these approaches on two problems. The first,
shown in figure 9, focuses on sequencing non-prehensile
manipulation steps. There is an obstacle in the middle of
the table, and the goal in this problem is to move the box
to the other side of the table. Allowing only nonprehensile
manipulation, the planner is able to find a solution.

Tables Ia and Ib summarize the running times for the
hierarchical method on this problem. In this example, the
OCG path always contains the same sequence of 9 OCSs.
Given this OCG path, we varied the number of sampled
poses per OCS in table Ia. Although the number of nodes
and the search time increases, the size of the resulting OPG
remains around 15 nodes. Hence, the impact on the next
stage, robot-contact planning, is minimal. Using the 15 OPS
nodes, we varied the discretization of the object surface (the
potential robot contacts); the results are in table Ib. The
increased discretization leads to a rapid rise in the size of

the graph and the search time. However, relatively small
values are often sufficient.

TABLE I: Results for the example in figure 9

(a) OPG construction and search with different number of pose samples;
values are averaged over 3 trials. Used 9 OCS.

Poses / OCS Nodes in OPG Nodes in path Time(s)
5 60 14 109.4

10 84 15 145.4
15 110 15 203.3

(b) RCG construction and search with different discretization of object
surface. Used 15 OPS.

Discretization Nodes in RCG Nodes in path Time(s)
12 452 24 19.7
20 1,157 22 58.5
40 4,095 21 278.5

The hierarchical approach is much more efficient than
the combined approach that considers both pose and robot
contacts at the same time. Table II shows a comparison
between the two approaches, given the same OCS path. The
leftmost column indicates the discretization of the object
surface. In the combined approach, increases in either the
number of pose samples or the discretization compound,
with significantly effect on both time and space. Even with 5
poses per object-contact state, the running time increased so
dramatically that we could not complete the graph construc-
tion when the object surface discretization was 40. Likewise,
we could not complete the graph construction for 10 poses
per OCS case with surface discretization of 20 or 40. In
the hierarchical approach, increasing the number of sample
poses generally affect only the object-pose planner, and its
impact on the robot-contact planner is small.

The second example, shown in figure 10, sequences non-
prehensile manipulation with prehensile manipulation. Here,
a portion of the object is inaccessible because of a shelf
and so the robot cannot grasp it. If the shelf is slippery,
that is, the friction coefficient between with the object is
lower than that with the robot, the robot can apply tangential
force to slide the box from the shelf and then grasp it to
move it to another table. This is a simpler problem and
the running times are substantially smaller, as shown in
tables IIIb and IIIa.

TABLE II: Combined approach compared with the hierar-
chical approach. Leftmost column indicates discretization of
object surface. For hierarchical approach, the sums of OPG
and RCG for corresponding columns are taken from table
Ia and Ib. * indicates that the computation was incomplete
after 3 hours.

5 pose per OCS 10 pose per OCS
Combined Hierarchical Combined Hierarchical

Nodes Time(s) Nodes Time Nodes Time Nodes Time
12 1,492 362 512 129 2,250 832 536 165
20 3,315 1,666 1,216 168 7,208 * 1,241 204
40 * * 4,154 388 * * 4,179 424



Fig. 10: Key frames from a sample solution trajectory for
sliding a box out from underneath a shelf. Green lines
indicate the force direction of the robot contact pushing the
object.

TABLE III: Results for the example in figure 10

(a) OPG construction and search with different number of pose samples.

Poses / OCS Nodes in OPG Nodes in path Time(s)
3 7 3 0.7
5 9 3 1.0

10 17 3 3.7

(b) RCG construction and search with different surface discretization.

Discretization Nodes in RCG Nodes in path Time(s)
12 86 7 1.3
20 206 7 4.6
40 612 7 28.9

VI. CONCLUSION

We have presented a hierarchical approach to planning
sequences of non-prehensile and prehensile actions. We have
compared it with a less hierarchical approach and showed
that our approach is significantly more efficient for both time
and space. This significant reduction in search space may
sometimes require us to backtrack to previous stages when
the search fails, but we found emperically that this approach
is still tractable even with some backtracks and that such
backtracks happen infrequently.

One challenging aspect of our work is extension to three
dimensions and to three or more robot contacts. In three
dimensions and with more robot contacts, the number of pos-
sible states in OPG and RCG would increase dramatically,
and thus search in both stages would be very expensive. But
we believe that we can limit the dramatic expansion of the
search space by focusing on a subset of the contacts that are
more robust and steering the planning in the small subset of
the search space.
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